29 research outputs found

    Advances in membrane separation of urban wastewater effluents for (pre) concentration of microcontaminants and nutrient recovery: A mini review

    Full text link
    [EN] This revision work focuses on the recent advances in the separation of microcontaminants from urban wastewaters, using ultrafiltration and Nanofiltration membranes. Conventional systems show advantages such as low pressure and fouling, competitive energetic- and maintenance costs compared to reverse osmosis, and higher rejection rates of organic microcontaminants compared to membrane distillation. However, these rejection rates strongly depend on temperature, flow, and pressure, as well as surface charge and concentration, challenging the adequate treatment of more complex matrices. Recent advances in material science strongly improved the implementation possibilities of different membrane types. In conventional industrial processes and especially in wastewater treatment, offering not only cost reducing solutions for urban wastewaters, but also more efficiency for the remediation of a high variety of industrial wastewaters. Moreover, membrane separation systems show great potential and applicability for added value substance recovery from wastewaters for the agricultural, chemical and consumer industry, for more sustainable natural resources use. Finally, perspectives on promising technologies for the implementation and combination of different membrane separation methods in treatment trains, such as advanced oxidation processes, are given, also aiming for zero-liquid discharge, to prevent microcontaminants and valuable resources from passing through conventional methods and focusing on closing the water cycle.This paper is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sk¿odowska-Curie grant agreement No 765860. The authors wish to thank the Spanish Ministry of Science, Innovation and Universities (MCIU), AEI and FEDER for funding under the CalypSol Project (Reference: RTI2018-097997-B-C32 and RTI2018-097997-B-C31). Furthermore, Dennis Deemter would like to give his thanks to the personnel at the Plataforma Solar de Almería.Deemter, D.; Oller, I.; Amat Payá, AM.; Malato, S. (2022). Advances in membrane separation of urban wastewater effluents for (pre) concentration of microcontaminants and nutrient recovery: A mini review. Chemical Engineering Journal Advances. 11:1-11. https://doi.org/10.1016/j.ceja.2022.1002981111

    Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater

    Full text link
    Removal of nine pharmaceutical compounds¿acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)¿spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the biological treatment (hydraulic residence time, HRT = 24 h), only AAF and CAF were completely eliminated,MET, SMX and HCT reached partial removal rates and the rest of compounds were completely refractory. With any ozone advanced oxidation process applied, the remaining pharmaceuticals disappear in less than 10 min. Fe3O4 or Fe(III) photocatalytic ozonation leads to 35% mineralization compared to 13% reached during ozonation alone after about 30-min reaction. Also, biodegradability of the treated wastewater increased 50% in the biological process plus another 150% after the ozonation processes. Both untreated and treated wastewater was non-toxic for Daphnia magna (D. magna) except when Fe(III) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Kinetic information on ozone processes reveals that pharmaceuticals at concentrations they have in urban wastewater are mainly removed through free radical oxidation.The authors thank the Spanish CICYT and Feder funds for the economic support through project CTQ2009/13459/C05/05. Also, Chemical Engineer A. Espejo thanks Gobierno de Extremadura for providing her a FPI grant.Espejo, A.; Aguinaco, A.; Amat Payá, AM.; Beltrán, FJ. (2014). Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances&Environmental Engineering. 49(4):410-421. https://doi.org/10.1080/10934529.2014.854652S410421494Moldovan, Z. (2006). Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere, 64(11), 1808-1817. doi:10.1016/j.chemosphere.2006.02.003Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157(3), 786-791. doi:10.1016/j.envpol.2008.11.025Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164(2-3), 1509-1516. doi:10.1016/j.jhazmat.2008.09.073Sim, W.-J., Lee, J.-W., & Oh, J.-E. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution, 158(5), 1938-1947. doi:10.1016/j.envpol.2009.10.036Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44(2), 417-426. doi:10.1016/j.watres.2009.07.010Calza, P., Massolino, C., Monaco, G., Medana, C., & Baiocchi, C. (2008). Study of the photolytic and photocatalytic transformation of amiloride in water. Journal of Pharmaceutical and Biomedical Analysis, 48(2), 315-320. doi:10.1016/j.jpba.2008.01.014Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2010). Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Doñana Park (Spain). Journal of Hazardous Materials, 183(1-3), 602-608. doi:10.1016/j.jhazmat.2010.07.067Boyd, G. R., Reemtsma, H., Grimm, D. A., & Mitra, S. (2003). Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of The Total Environment, 311(1-3), 135-149. doi:10.1016/s0048-9697(03)00138-4ROBERTS, P., & THOMAS, K. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment, 356(1-3), 143-153. doi:10.1016/j.scitotenv.2005.04.031Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013-1021. doi:10.1016/j.watres.2006.06.034Yoon, Y., Ryu, J., Oh, J., Choi, B.-G., & Snyder, S. A. (2010). Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of The Total Environment, 408(3), 636-643. doi:10.1016/j.scitotenv.2009.10.049Ternes, T. A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., & Teiser, B. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 37(8), 1976-1982. doi:10.1016/s0043-1354(02)00570-5Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Mezcua, M., Hernando, M. D., Letón, P., … Fernández-Alba, A. R. (2008). Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 42(14), 3719-3728. doi:10.1016/j.watres.2008.06.008Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363-380. doi:10.1016/j.watres.2008.10.047Fernández, C., González-Doncel, M., Pro, J., Carbonell, G., & Tarazona, J. V. (2010). Occurrence of pharmaceutically active compounds in surface waters of the henares-jarama-tajo river system (madrid, spain) and a potential risk characterization. Science of The Total Environment, 408(3), 543-551. doi:10.1016/j.scitotenv.2009.10.009Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 214(6), 442-448. doi:10.1016/j.ijheh.2011.08.002Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Petre, A., García-Calvo, E., Gómez, M. J., … Fernández-Alba, A. R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44(2), 578-588. doi:10.1016/j.watres.2009.07.004Rodríguez, E., Fernández, G., Ledesma, B., Álvarez, P., & Beltrán, F. J. (2009). Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids. Applied Catalysis B: Environmental, 92(3-4), 240-249. doi:10.1016/j.apcatb.2009.07.013Rodríguez, E. M., Núñez, B., Fernández, G., & Beltrán, F. J. (2009). Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water. Applied Catalysis B: Environmental, 89(1-2), 214-222. doi:10.1016/j.apcatb.2008.11.030Moore, W. A., Kroner, R. C., & Ruchhoft, C. C. (1949). Dichromate Reflux Method for Determination of Oxygen Consumed. Analytical Chemistry, 21(8), 953-957. doi:10.1021/ac60032a020Means, J. L., & Anderson, S. J. (1981). Comparison of five different methods for measuring biodegradability in aqueous environments. Water, Air, and Soil Pollution, 16(3), 301-315. doi:10.1007/bf01046911Stookey, L. L. (1970). Ferrozine---a new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779-781. doi:10.1021/ac60289a016Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449-456. doi:10.1016/0043-1354(81)90054-3Petala, M., Kokokiris, L., Samaras, P., Papadopoulos, A., & Zouboulis, A. (2009). Toxicological and ecotoxic impact of secondary and tertiary treated sewage effluents. Water Research, 43(20), 5063-5074. doi:10.1016/j.watres.2009.08.043Tothill, I. E., & Turner, A. P. F. (1996). Developments in bioassay methods for toxicity testing in water treatment. TrAC Trends in Analytical Chemistry, 15(5), 178-188. doi:10.1016/0165-9936(96)80640-6Farré, M., & Barceló, D. (2003). Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends in Analytical Chemistry, 22(5), 299-310. doi:10.1016/s0165-9936(03)00504-1Ten Berge, W. F. (1978). Breeding Daphnia magna. Hydrobiologia, 59(2), 121-123. doi:10.1007/bf00020772American Society for Testing and Materials (ASTM). 1987.Standard Guide for Conducting Renewal Life-Cycle Toxicity Tests with Daphnia Magna. Annual Book of ASTM Standards,Vol. E 1193, 765–781. Philadelphia: ASTM.Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831-841. doi:10.1016/j.watres.2008.11.043Lin, A. Y.-C., Lin, C.-A., Tung, H.-H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1-3), 242-250. doi:10.1016/j.jhazmat.2010.07.017Yang, S.-F., Lin, C.-F., Yu-Chen Lin, A., & Andy Hong, P.-K. (2011). Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Research, 45(11), 3389-3397. doi:10.1016/j.watres.2011.03.052Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38(19), 4075-4084. doi:10.1016/j.watres.2004.07.015Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A., & Dickenson, E. R. V. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Research, 45(11), 3417-3426. doi:10.1016/j.watres.2011.03.056Dionisi, D., Bertin, L., Bornoroni, L., Capodicasa, S., Papini, M. P., & Fava, F. (2006). Removal of organic xenobiotics in activated sludges under aerobic conditions and anaerobic digestion of the adsorbed species. Journal of Chemical Technology & Biotechnology, 81(9), 1496-1505. doi:10.1002/jctb.1561Byrns, G. (2001). The fate of xenobiotic organic compounds in wastewater treatment plants. Water Research, 35(10), 2523-2533. doi:10.1016/s0043-1354(00)00529-7Hyland, K. C., Dickenson, E. R. V., Drewes, J. E., & Higgins, C. P. (2012). Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Research, 46(6), 1958-1968. doi:10.1016/j.watres.2012.01.012Yang, S.-F., Lin, C.-F., Wu, C.-J., Ng, K.-K., Yu-Chen Lin, A., & Andy Hong, P.-K. (2012). Fate of sulfonamide antibiotics in contact with activated sludge – Sorption and biodegradation. Water Research, 46(4), 1301-1308. doi:10.1016/j.watres.2011.12.035Feng, W., & Nansheng, D. (2000). Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere, 41(8), 1137-1147. doi:10.1016/s0045-6535(00)00024-2Rodríguez, E. M., Fernández, G., Álvarez, P. M., Hernández, R., & Beltrán, F. J. (2011). Photocatalytic degradation of organics in water in the presence of iron oxides: Effects of pH and light source. Applied Catalysis B: Environmental, 102(3-4), 572-583. doi:10.1016/j.apcatb.2010.12.041Beltrán, F. J., Aguinaco, A., García-Araya, J. F., & Oropesa, A. (2008). Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Research, 42(14), 3799-3808. doi:10.1016/j.watres.2008.07.019García-Araya, J. F., Beltrán, F. J., & Aguinaco, A. (2010). Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. Journal of Chemical Technology & Biotechnology, 85(6), 798-804. doi:10.1002/jctb.2363Rivas, F. J., Beltrán, F. J., & Encinas, A. (2012). Removal of emergent contaminants: Integration of ozone and photocatalysis. Journal of Environmental Management, 100, 10-15. doi:10.1016/j.jenvman.2012.01.025Rivas, F. J., Beltrán, F. J., Gimeno, O., & Acedo, B. (2001). Wet Air Oxidation Of Wastewater From Olive Oil Mills. Chemical Engineering & Technology, 24(4), 415-421. doi:10.1002/1521-4125(200104)24:43.0.co;2-cGIMENO, O., CARBAJO, M., BELTRAN, F., & RIVAS, F. (2005). Phenol and substituted phenols AOPs remediation. Journal of Hazardous Materials, 119(1-3), 99-108. doi:10.1016/j.jhazmat.2004.11.024Beltrán, F. J., Gimeno, O., Rivas, F. J., & Carbajo, M. (2006). Photocatalytic ozonation of gallic acid in water. Journal of Chemical Technology & Biotechnology, 81(11), 1787-1796. doi:10.1002/jctb.1605Aguinaco, A., Beltrán, F. J., García-Araya, J. F., & Oropesa, A. (2012). Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chemical Engineering Journal, 189-190, 275-282. doi:10.1016/j.cej.2012.02.072Trovó, A. G., Pupo Nogueira, R. F., Agüera, A., Fernandez-Alba, A. R., & Malato, S. (2011). Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Research, 45(3), 1394-1402. doi:10.1016/j.watres.2010.10.029Trovó, A. G., Pupo Nogueira, R. F., Agüera, A., Fernandez-Alba, A. R., & Malato, S. (2012). Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Research, 46(16), 5374-5380. doi:10.1016/j.watres.2012.07.015Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—II. Water Research, 17(2), 185-194. doi:10.1016/0043-1354(83)90099-4Javier Rivas, F., Sagasti, J., Encinas, A., & Gimeno, O. (2011). Contaminants abatement by ozone in secondary effluents. Evaluation of second-order rate constants. Journal of Chemical Technology & Biotechnology, 86(8), 1058-1066. doi:10.1002/jctb.2609Huber, M. M., Canonica, S., Park, G.-Y., & von Gunten, U. (2003). Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology, 37(5), 1016-1024. doi:10.1021/es025896hReal, F. J., Acero, J. L., Benitez, F. J., Roldán, G., & Fernández, L. C. (2010). Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems. Chemical Engineering Journal, 160(1), 72-78. doi:10.1016/j.cej.2010.03.009Benner, J., Salhi, E., Ternes, T., & von Gunten, U. (2008). Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Research, 42(12), 3003-3012. doi:10.1016/j.watres.2008.04.002Beltrán, F. J., Aguinaco, A., & García-Araya, J. F. (2009). Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Water Research, 43(5), 1359-1369. doi:10.1016/j.watres.2008.12.015Johnson, P. N., & Davis, R. A. (1996). Diffusivity of Ozone in Water. Journal of Chemical & Engineering Data, 41(6), 1485-1487. doi:10.1021/je9602125Beltrán, F. J. (1995). Theoretical Aspects Of The Kinetics Of Competitive Ozone Reactions In Water. Ozone: Science & Engineering, 17(2), 163-181. doi:10.1080/0191951950854754

    Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems

    Full text link
    [EN] The aim of this paper is to provide an overview on the different approaches that can be employed to drive a photo-Fenton process under mild conditions, using both heterogeneous and homogeneous iron sources. For this purpose, sections are devoted to the following strategies: a) addition of iron at low concentrations; b) using the matrix of the effluent in order to avoid deactivation of iron; c) addition of chemical auxiliaries to form photoactive complexes with iron, such as carboxylates, chelating agents and humic-like macromolecules; d) strategies leading to the application of heterogeneous photo-Fenton process, by using iron-based solid particles or by hosting iron on different supports and; e) using heterogeneous iron sources as a reservoir for constant dosing of homogeneous iron photocatalyst. In particular, the review will focus on the elimination of emerging pollutants (e.g. drugs, personal care products or pesticides at low concentrations) which are the effluents where applying neutral photo-Fenton seems especially meaningful, although relevant works with other families of pollutants are also consideredThis work was performed with the financial of the Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014, within the framework of the research project Mat4treat. Authors also want to thank the financial support of Spanish Ministerio of Economía y Competitividad (TRICERATOPS project and FOTO-CAT excellence network).Santos-Juanes Jordá, L.; Amat Payá, AM.; Arqués Sanz, A. (2017). Strategies to Drive Photo-Fenton Process at Mild Conditions for the Removal of Xenobiotics from Aqueous Systems. Current Organic Chemistry. 21(12):1074-1083. https://doi.org/10.2174/1385272821666170102150337S10741083211

    Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation

    Full text link
    [EN] The degradation of various preservatives used in the cosmetics industry, including five parabens and their most employed substitute, methylisothiazolinone (MIT), was investigated. A mild photo-Fenton process was applied using low iron concentrations (5 mg/L) at a pH of five, instead of the traditional acidic value of three. At these conditions, the paraben degradation was very low after one hour of reaction and it was necessary to present humic-like substances (HLS) acting as iron chelators to improve the process. Values obtained when MIT was treated were very low, also in the presence of HLS, indicating that their complexing effect was not acting properly. When MIT was added to the mixture of parabens an inhibitory effect was found in the presence of HLS. A possible complex between iron and MIT was suggested and the studies of hydrogen peroxide consumption and Job's plot technique confirmed this hypothesis. Evidence of the formation of this inactive complex, so far never reported, will be essential in future work when dealing with this compound using Fenton processes. Furthermore, this fact points out the importance of using mixtures of model contaminants instead of a single one or a group of the same family, since their ability to form active or inactive complexes with iron can strongly change the behavior of the whole system.Authors want to acknowledge the financial support of Spanish Ministerio de Ciencia, Innovacion y Universidad (RTI 2018-097997-B-C31, Calypsol Project) and Generalitat Valenciana AICO/2021/014.Duarte-Alvarado, V.; Santos-Juanes Jordá, L.; Arqués Sanz, A.; Amat Payá, AM. (2022). Mild Fenton Processes for the Removal of Preservatives: Interfering Effect of Methylisothiazolinone (MIT) on Paraben Degradation. Catalysts. 12(11):1-16. https://doi.org/10.3390/catal12111390116121

    Assessment of a Novel Photocatalytic TiO2-Zirconia Ultrafiltration Membrane and Combination with Solar Photo-Fenton Tertiary Treatment of Urban Wastewater

    Full text link
    [EN] The objective of this study was to assess the combination of a photocatalytic TiO2-coated ZrO2 UF membrane with solar photo-Fenton treatment at circumneutral pH for the filtration and treatment of urban wastewater treatment plant (UWWTP) effluents. Photocatalytic self-cleaning properties were tested with a UWWTP effluent under irradiation in a solar simulator. Then, both the permeates and retentates from the membrane process were treated using the solar photo-Fenton treatment. The UWWTP effluent was spiked with caffeine (CAF), imidacloprid (IMI), thiacloprid (THI), carbamazepine (CBZ) and diclofenac (DCF) at an initial concentration of 100 mu g/L each. Retention on the membrane of Pseudomonas Aeruginosa (P. Aeruginosa), a Gram-negative bacterial strain, was tested with and without irradiation. It was demonstrated that filtration of a certain volume of UWWTP effluent in the dark is possible, and the original conditions can then be recovered after illumination. The photocatalytic membrane significantly reduces the turbidity of the UWWTP effluent, significantly increasing the degradation efficiency of the subsequent solar photo-Fenton treatment. The results showed that the membrane allowed consistent retention of P. Aeruginosa at an order of magnitude of 1 x 10(3)-1 x 10(4) CFU/mL.This paper is part of a project funded by the European Union's Horizon 2020 Research and Innovation Programme under Marie Sklodowska-Curie Grant Agreement No. 765860. The authors wish to thank the Spanish Ministry of Science, Innovation and Universities (MCIU), AEI and FEDER for funding under the CalypSol Project (Ref: RTI2018-097997-B-C32 and RTI2018-097997-B-C31).Deemter, D.; Bortot Coelho, FE.; Oller, I.; Malato, S.; Amat Payá, AM. (2022). Assessment of a Novel Photocatalytic TiO2-Zirconia Ultrafiltration Membrane and Combination with Solar Photo-Fenton Tertiary Treatment of Urban Wastewater. Catalysts. 12(5):1-15. https://doi.org/10.3390/catal1205055211512

    Effect of methylisothiazolinone on biological treatments: Efficiency of SBRs and Bioindicative Studies

    Full text link
    Methylisothiazolinone (MIT) is widely used as biocide in hair and skin care products and in high concentrations, more than 150 mg/L, in cooling towers in the paper mill and refinery industry. This product has been recognized as a potent contact allergen and is discharged to the wastewater treatment plants (WWTP) from industrial processes or domestic usages. However, the role of MIT in biological treatment has not been characterized, and therefore, the effect of MIT on the composition and performance of activated sludge has been analyzed. For this purpose, a sequential batch reactor was fed with a synthetic solution containing 5 mg/L of MIT. Addition of MIT had shown no significant effect on organic matter metabolization (dissolved organic carbon [DOC] removal remained constant at 80-90%). On the contrary, a loss of efficiency in the nitrification process occurred (ammonium removal decreased from 90% to 20% per cycle throughout the experiment), first affecting the nitrite oxidizing bacteria and, after around 40 cycles, also the ammonium-oxidizing bacteria disappeared, as shown by fluorescence in situ hybridization analysis. Bioindicative studies based on counts of protozoa and sludge biotic index indicated that, at the end of the process, a stable and well-colonized protozoa community was obtained. Finally, respirometric tests indicated some acclimatization of the heterotrophic bacteria to MIT, as shown by shorter lag periods when the sludge was previously fed with MIT. The role of MIT in biological treatment has been characterized to increase the knowledge about this pollutant effects on activated sludge to improve WWTP performance.We would like to thank the financial support of the Spanish Ministerio de Economia y Competitividad AQUAFOTOX (CTQ2012-38754-C03-02).Amat Payá, AM.; Arques Sanz, A.; López Pérez, MF.; Nácher Pastor, M.; Palacios Guillem, S. (2015). Effect of methylisothiazolinone on biological treatments: Efficiency of SBRs and Bioindicative Studies. Environmental Engineering Science. 32(6):479-485. https://doi.org/10.1089/ees.2014.0283S47948532

    Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment

    Full text link
    The aim of the research under discussion in the present paper is to study the decolorization and mineralization of textile industrial wastewaters from exhaust dyebaths by means of a solar photo-Fenton treatment. The exhaust dyebaths were grouped according to the fibers and dyeing recipes used, so as to verify the effectiveness of the photo-Fenton treatment on each dyeing process separately. Next, the results previously achieved were compared to those obtained by mixing all the exhaust baths together, as is common practice when treating the industrial textile effluents from dyeing and finishing procedures. After their neutralization and filtration, photo-Fenton-treated exhaust dyebaths and mixtures were reused to prepare laboratory dyeing samples. These techniques on the reuse of wastewaters were tested on several fibers by using the same dyeing procedure that was originally applied, as well as in different dyeing processes and for most fiber types. The results achieved showed that the reutilization of the aforementioned effluents, either in new exhaust dyebaths or in some other textile industrial operations, was of some considerable importance. Water consumption would be significantly reduced as well as the wastewater levies for the firms. Furthermore, the contaminating effect of the industrial effluents to be dealt with would be also diminished, reaping environmental and economic benefits.Sanz Carbonell, JF.; Monllor Pérez, P.; Vicente Candela, R.; Amat Payá, AM.; Arques Sanz, A.; Bonet Aracil, MA. (2013). Exploring reuse of industrial wastewater from exhaust dyebaths by solar-based photo-Fenton treatment. Textile Research Journal. 83(13):1325-1332. doi:10.1177/0040517512467061S13251332831

    Unveiling the Dependence between Hydroxyl Radical Generation and Performance of Fenton Systems with Complexed Iron

    Full text link
    [EN] Humiclike substances (HLS) have been demonstrated to be useful auxiliaries to drive the (photo)-Fenton process at mild pH, by avoiding iron inactivation via formation of active complexes. However, the actual performance of the process is affected by a manifold of opposite processes. In this work, the generation of hydroxyl radical-like reactive species in the Fentonlike process has been investigated using electron paramagnetic resonance, employing 5,5-dimethyl-1-pyrroline-N-oxide as a probe molecule. The signal obtained with the Fe(II)-HLS-H2O2 system at pH = was very intense but decreased with time, in line with the difficult reduction of the formed Fe(III) to Fe(II). On the contrary, the signal of the Fe(III)-HLS-H2O2 system was weak but stable. The most intense signal was observed at HLS concentration of ca. 30 mg/L. Interestingly, the performance of the Fenton system at pH = 5 to degrade caffeine followed the same trends, although caffeine removal was very low after 1 h of irradiation. The results were more evident in a solar simulated photo-Fenton process, where an increase in the abatement of caffeine was observed until an HLS concentration of 30 mg/L, where 98% removal was reached after 1 h.The authors want to acknowledge the financial support from Ministerio de Ciencia, Innovacion y Universidades (RTI2018-097997-B-C31) and European Union (645551-RISE-2014, MAT4TREAT). P.G.-N. would like to thank Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2016-077962).García-Negueroles, P.; García-Ballesteros, S.; Amat Payá, AM.; Laurenti, E.; Arqués Sanz, A.; Santos-Juanes Jordá, L. (2019). Unveiling the Dependence between Hydroxyl Radical Generation and Performance of Fenton Systems with Complexed Iron. ACS Omega. 4(26):21698-21703. https://doi.org/10.1021/acsomega.9b02241S216982170342

    Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine

    Full text link
    [EN] Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP+) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP+. Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP+ reduction, with formation of a pyranyl radical (TPP center dot), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP center dot detected was also correlated with the efficiency of the photodegradation process.Financial support from Spanish Government (Grants SEV-2016-0683, CTQ2012-38754-C03-02 and CTQ2015-69832-C4-4-R) and Generalitat Valenciana (Prometeo Program) is gratefully acknowledged. R. Martinez-Haya thanks financial support from Spanish Government (Grant SEV-2012-0267).Martínez-Haya, R.; Gomis Vicens, J.; Arqués Sanz, A.; Amat Payá, AM.; Miranda Alonso, MÁ.; Marín García, ML. (2018). Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine. Journal of Hazardous Materials. 356:91-97. https://doi.org/10.1016/j.jhazmat.2018.05.023S919735

    Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action

    Get PDF
    [EN] Soybean peroxidase (SBP) has been employed for the treatment of aqueous solutions containing pentachlorophenol (PCP) in the presence of hydrogen peroxide at pH range 5-7. Reaction carried out with 1mg/L of PCP, 4mg/L of H2O2, and 1.3x10(-9)M of SBP showed a fast initial elimination of PCP (ca. 30% in 20min), but the reaction does not go beyond the removal of 50% of the initial concentration of PCP. Modification in SBP and PCP amounts did not change the reaction profile and higher amounts of H2O2 were detrimental for the reaction. Addition of Fe(II) to the system resulted in an acceleration of the process to reach nearly complete PCP removal at pH 5 or 6; this is more probably due to a synergetic effect of the enzymatic process and Fenton reaction. However, experiments developed in tap water resulted in a lower PCP elimination, but this inconvenience can be partly overcome by leaving the tap water overnight in an open vessel before reaction.We want to acknowledge Davide Mainero from Acea Pinerolese for his collaboration in this research. The authors want to thank the financial support of the European Union (PIRSES-GA-2010-269128, EnvironBOS and Marie Sklodowska-Curie Research and Innovation Staff Exchange projectH2020-MSCA-RISE-2014, Mat4treaT-project number: 645551) and Spanish Ministerio de Educacion y Ciencia (CTQ2015-69832-C4-4-R). Sara Garcia-Ballesteros would like to thank the Spanish Ministerio de Economia y Competitividad for her fellowship (BES-2013-066201).Tolardo, V.; García-Ballesteros, S.; Santos-Juanes Jordá, L.; Vercher Pérez, RF.; Amat Payá, AM.; Arqués Sanz, A.; Laurenti, E. (2019). Pentachlorophenol Removal from Water by Soybean Peroxidase and Iron(II) Salts Concerted Action. Water Air & Soil Pollution. 230(6):1-8. https://doi.org/10.1007/s11270-019-4189-7S182306Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011 .Ballschmiter, K. (2003). Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. Chemosphere, 52(2), 313–324. https://doi.org/10.1016/S0045-6535(03)00211-X .Calza, P., Zacchigna, D., & Laurenti, E. (2016). Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environmental Science and Pollution Research, 23(23), 23742–23749. https://doi.org/10.1007/s11356-016-7399-1 .Caza, N., Bewtra, J., Biswas, N., & Taylor, K. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 33(13), 3012–3018. https://doi.org/10.1016/S0043-1354(98)00525-9 .Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 322(1–3), 21–39. https://doi.org/10.1016/j.scitotenv.2003.09.015 .Donadelli, J. A., Carlos, L., Arques, A., & García Einschlag, F. S. (2018). Kinetic and mechanistic analysis of azo dyes decolorization by ZVI-assisted Fenton systems: pH-dependent shift in the contributions of reductive and oxidative transformation pathways. Applied Catalysis B: Environmental, 231, 51–61. https://doi.org/10.1016/j.apcatb.2018.02.057 .Durán, N., & Esposito, E. (2000). Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Applied Catalysis B: Environmental, 28(2), 83–99. https://doi.org/10.1016/S0926-3373(00)00168-5 .Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B., & Guieysse, B. (2007). Sequential photochemical–biological degradation of chlorophenols. Chemosphere, 66(11), 2201–2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 .Garcia-Peña, E. I., Zarate-Segura, P., Guerra-Blanco, P., Poznyak, T., & Chairez, I. (2012). Enhanced phenol and chlorinated phenols removal by combining ozonation and biodegradation. Water, Air, and Soil Pollution, 223(7), 4047–4064. https://doi.org/10.1007/s11270-012-1172-y .Hoekstra, E. J., De Weerd, H., De Leer, E. W. B., & Brinkman, U. A. T. (1999). Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest. Environmental Science and Technology, 33(15), 2543–2549. https://doi.org/10.1021/es9900104 .Karci, A. (2014). Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity. Chemosphere, 99, 1–18. https://doi.org/10.1016/j.chemosphere.2013.10.034 .Li, Z. (2018). Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. Journal of Environmental Management, 205, 163–173. https://doi.org/10.1016/j.jenvman.2017.09.070 .Marchis, T., Avetta, P., Bianco-Prevot, A., Fabbri, D., Viscardi, G., & Laurenti, E. (2011). Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 105(2), 321–327. https://doi.org/10.1016/j.jinorgbio.2010.11.009 .Marchis, T., Cerrato, G., Magnacca, G., Crocellà, V., & Laurenti, E. (2012). Immobilization of soybean peroxidase on aminopropyl glass beads: structural and kinetic studies. Biochemical Engineering Journal, 67, 28–34. https://doi.org/10.1016/j.bej.2012.05.002 .Muñoz, M., de Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2013). Chlorophenols breakdown by a sequential hydrodechlorination-oxidation treatment with a magnetic Pd-Fe/?-Al2O3 catalyst. Water Research, 47(9), 3070–3080. https://doi.org/10.1016/j.watres.2013.03.024 .Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-pour, A., Verma, M., & Surampalli, R. Y. (2018). Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environmental Pollution. Elsevier. https://doi.org/10.1016/j.envpol.2017.11.060 .Ngo, T. T., & Lenhoff, H. M. (1980). A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Analytical Biochemistry, 105(1), 389–397. https://doi.org/10.1016/0003-2697(80)90475-3 .Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009 .Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409(20), 4141–4166. https://doi.org/10.1016/j.scitotenv.2010.08.061 .Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005, July 22). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports. Springer-Verlag. https://doi.org/10.1007/s00299-005-0972-6 .Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. https://doi.org/10.1016/j.apcatb.2003.09.010 .Qayyum, H., Maroof, H., & Yasha, K. (2009). Remediation and treatment of organopollutants mediated by peroxidases: a review. Critical Reviews in Biotechnology, 29(2), 94–119. https://doi.org/10.1080/07388550802685306 .Samokyszyn, V. M., Freeman, J. P., Rao Maddipati, K., & Lloyd, R. V. (1995). Peroxidase-catalyzed oxidation of pentachlorophenol. Chemical Research in Toxicology, 8, 349–355 http://pubs.acs.org/doi/pdf/10.1021/tx00045a005 . Accessed 23 June 2017Santos-Juanes, L., Amat, A. M., & Arques, A. (2017a). Strategies to drive photo-Fenton process at mild conditions for the removal of xenobiotics from aqueous systems. Current Organic Chemistry, 21(12), 1074–1083. https://doi.org/10.1136/adc.2010.199901 .Santos-Juanes, L., García Einschlag, F. S., Amat, A. M., & Arques, A. (2017b). Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants. Chemical Engineering Journal, 310, 484–490. https://doi.org/10.1016/j.cej.2016.04.114 .Sarria, V., Parra, S., Adler, N., Péringer, P., Benitez, N., & Pulgarin, C. (2002). Recent developments in the coupling of photoassisted and aerobic biological processes for the treatment of biorecalcitrant compounds. Catalysis Today, 76(2–4), 301–315. https://doi.org/10.1016/S0920-5861(02)00228-6 .Sharma, S., Mukhopadhyay, M., & Murthy, Z. V. P. (2013). Treatment of chlorophenols from wastewaters by advanced oxidation processes. Separation & Purification Reviews, 42(May 2015), 37–41. https://doi.org/10.1080/15422119.2012.669804 .Soler, J., García-Ripoll, A., Hayek, N., Miró, P., Vicente, R., Arques, A., & Amat, A. M. (2009). Effect of inorganic ions on the solar detoxification of water polluted with pesticides. Water Research, 43(18), 4441–4450. https://doi.org/10.1016/j.watres.2009.07.011 .Steevensz, A., Cordova Villegas, L. G., Feng, W., Taylor, K. E., Bewtra, J. K., & Biswas, N. (2014). Soybean peroxidase for industrial wastewater treatment: a mini review. Journal of Environmental Engineering and Science, 9(3), 181–186. https://doi.org/10.1680/jees.13.00013 .Sun, Z., Wei, X., Zhang, H., & Hu, X. (2015). Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film. Environmental Science and Pollution Research, 22(5), 3828–3837. https://doi.org/10.1007/s11356-014-3641-x .Tsai, W.-T. (2013). A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 95(5), 723–736. https://doi.org/10.1080/02772248.2013.818150 .Valderrama, B., Ayala, M., & Vazquez-Duhalt, R. (2002, May 1). Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. Chemistry and Biology. Cell Press. https://doi.org/10.1016/S1074-5521(02)00149-7 .Verbrugge, L. A., Kahn, L., & Morton, J. M. (2018). Pentachlorophenol, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans in surface soil surrounding pentachlorophenol-treated utility poles on the Kenai National Wildlife Refuge, Alaska USA. Environmental Science and Pollution Research, 25(19), 19187–19195. https://doi.org/10.1007/s11356-018-2269-7 .Wright, H., & Nicell, J. A. (1999). Characterization of soybean peroxidase for the treatment of aqueous phenols. Bioresource Technology, 70(1), 69–79. https://doi.org/10.1016/S0960-8524(99)00007-3 .Zhang, G., & Nicell, J. A. (2000). Treatment of aqueous pentachlorophenol by horseradish peroxidase and hydrogen peroxide. Water Research, 34(5), 1629–1637. https://doi.org/10.1016/S0043-1354(99)00326-7 .Zhang, J., Ye, P., Chen, S., & Wang, W. (2007). Removal of pentachlorophenol by immobilized horseradish peroxidase. International Biodeterioration & Biodegradation, 59, 307–314. https://doi.org/10.1016/j.ibiod.2006.09.003 .Zheng, W., Yu, H., Wang, X., & Qu, W. (2012, July 1). Systematic review of pentachlorophenol occurrence in the environment and in humans in China: not a negligible health risk due to the re-emergence of schistosomiasis. Environment International. Pergamon. https://doi.org/10.1016/j.envint.2011.04.014
    corecore