Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater

Abstract

Removal of nine pharmaceutical compounds¿acetaminophen (AAF), antipyrine (ANT), caffeine (CAF), carbamazepine (CRB), diclofenac (DCF), hydrochlorothiazide (HCT), ketorolac (KET), metoprolol (MET) and sulfamethoxazole (SMX)¿spiked in a primary sedimentation effluent of a municipal wastewater has been studied with sequential aerobic biological and ozone advanced oxidation systems. Combinations of ozone, UVA black light and Fe(III) or Fe3O4 constituted the chemical systems. During the biological treatment (hydraulic residence time, HRT = 24 h), only AAF and CAF were completely eliminated,MET, SMX and HCT reached partial removal rates and the rest of compounds were completely refractory. With any ozone advanced oxidation process applied, the remaining pharmaceuticals disappear in less than 10 min. Fe3O4 or Fe(III) photocatalytic ozonation leads to 35% mineralization compared to 13% reached during ozonation alone after about 30-min reaction. Also, biodegradability of the treated wastewater increased 50% in the biological process plus another 150% after the ozonation processes. Both untreated and treated wastewater was non-toxic for Daphnia magna (D. magna) except when Fe(III) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Kinetic information on ozone processes reveals that pharmaceuticals at concentrations they have in urban wastewater are mainly removed through free radical oxidation.The authors thank the Spanish CICYT and Feder funds for the economic support through project CTQ2009/13459/C05/05. Also, Chemical Engineer A. Espejo thanks Gobierno de Extremadura for providing her a FPI grant.Espejo, A.; Aguinaco, A.; Amat Payá, AM.; Beltrán, FJ. (2014). Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances&Environmental Engineering. 49(4):410-421. https://doi.org/10.1080/10934529.2014.854652S410421494Moldovan, Z. (2006). Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere, 64(11), 1808-1817. doi:10.1016/j.chemosphere.2006.02.003Bartelt-Hunt, S. L., Snow, D. D., Damon, T., Shockley, J., & Hoagland, K. (2009). The occurrence of illicit and therapeutic pharmaceuticals in wastewater effluent and surface waters in Nebraska. Environmental Pollution, 157(3), 786-791. doi:10.1016/j.envpol.2008.11.025Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials, 164(2-3), 1509-1516. doi:10.1016/j.jhazmat.2008.09.073Sim, W.-J., Lee, J.-W., & Oh, J.-E. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution, 158(5), 1938-1947. doi:10.1016/j.envpol.2009.10.036Sui, Q., Huang, J., Deng, S., Yu, G., & Fan, Q. (2010). Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research, 44(2), 417-426. doi:10.1016/j.watres.2009.07.010Calza, P., Massolino, C., Monaco, G., Medana, C., & Baiocchi, C. (2008). Study of the photolytic and photocatalytic transformation of amiloride in water. Journal of Pharmaceutical and Biomedical Analysis, 48(2), 315-320. doi:10.1016/j.jpba.2008.01.014Camacho-Muñoz, D., Martín, J., Santos, J. L., Aparicio, I., & Alonso, E. (2010). Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Doñana Park (Spain). Journal of Hazardous Materials, 183(1-3), 602-608. doi:10.1016/j.jhazmat.2010.07.067Boyd, G. R., Reemtsma, H., Grimm, D. A., & Mitra, S. (2003). Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of The Total Environment, 311(1-3), 135-149. doi:10.1016/s0048-9697(03)00138-4ROBERTS, P., & THOMAS, K. (2006). The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment, 356(1-3), 143-153. doi:10.1016/j.scitotenv.2005.04.031Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013-1021. doi:10.1016/j.watres.2006.06.034Yoon, Y., Ryu, J., Oh, J., Choi, B.-G., & Snyder, S. A. (2010). Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of The Total Environment, 408(3), 636-643. doi:10.1016/j.scitotenv.2009.10.049Ternes, T. A., Stüber, J., Herrmann, N., McDowell, D., Ried, A., Kampmann, M., & Teiser, B. (2003). Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? Water Research, 37(8), 1976-1982. doi:10.1016/s0043-1354(02)00570-5Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Mezcua, M., Hernando, M. D., Letón, P., … Fernández-Alba, A. R. (2008). Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Research, 42(14), 3719-3728. doi:10.1016/j.watres.2008.06.008Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes – Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere, 85(5), 693-709. doi:10.1016/j.chemosphere.2011.06.082Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2009). The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Research, 43(2), 363-380. doi:10.1016/j.watres.2008.10.047Fernández, C., González-Doncel, M., Pro, J., Carbonell, G., & Tarazona, J. V. (2010). Occurrence of pharmaceutically active compounds in surface waters of the henares-jarama-tajo river system (madrid, spain) and a potential risk characterization. Science of The Total Environment, 408(3), 543-551. doi:10.1016/j.scitotenv.2009.10.009Deblonde, T., Cossu-Leguille, C., & Hartemann, P. (2011). Emerging pollutants in wastewater: A review of the literature. International Journal of Hygiene and Environmental Health, 214(6), 442-448. doi:10.1016/j.ijheh.2011.08.002Rosal, R., Rodríguez, A., Perdigón-Melón, J. A., Petre, A., García-Calvo, E., Gómez, M. J., … Fernández-Alba, A. R. (2010). Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research, 44(2), 578-588. doi:10.1016/j.watres.2009.07.004Rodríguez, E., Fernández, G., Ledesma, B., Álvarez, P., & Beltrán, F. J. (2009). Photocatalytic degradation of organics in water in the presence of iron oxides: Influence of carboxylic acids. Applied Catalysis B: Environmental, 92(3-4), 240-249. doi:10.1016/j.apcatb.2009.07.013Rodríguez, E. M., Núñez, B., Fernández, G., & Beltrán, F. J. (2009). Effects of some carboxylic acids on the Fe(III)/UVA photocatalytic oxidation of muconic acid in water. Applied Catalysis B: Environmental, 89(1-2), 214-222. doi:10.1016/j.apcatb.2008.11.030Moore, W. A., Kroner, R. C., & Ruchhoft, C. C. (1949). Dichromate Reflux Method for Determination of Oxygen Consumed. Analytical Chemistry, 21(8), 953-957. doi:10.1021/ac60032a020Means, J. L., & Anderson, S. J. (1981). Comparison of five different methods for measuring biodegradability in aqueous environments. Water, Air, and Soil Pollution, 16(3), 301-315. doi:10.1007/bf01046911Stookey, L. L. (1970). Ferrozine---a new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779-781. doi:10.1021/ac60289a016Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449-456. doi:10.1016/0043-1354(81)90054-3Petala, M., Kokokiris, L., Samaras, P., Papadopoulos, A., & Zouboulis, A. (2009). Toxicological and ecotoxic impact of secondary and tertiary treated sewage effluents. Water Research, 43(20), 5063-5074. doi:10.1016/j.watres.2009.08.043Tothill, I. E., & Turner, A. P. F. (1996). Developments in bioassay methods for toxicity testing in water treatment. TrAC Trends in Analytical Chemistry, 15(5), 178-188. doi:10.1016/0165-9936(96)80640-6Farré, M., & Barceló, D. (2003). Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. TrAC Trends in Analytical Chemistry, 22(5), 299-310. doi:10.1016/s0165-9936(03)00504-1Ten Berge, W. F. (1978). Breeding Daphnia magna. Hydrobiologia, 59(2), 121-123. doi:10.1007/bf00020772American Society for Testing and Materials (ASTM). 1987.Standard Guide for Conducting Renewal Life-Cycle Toxicity Tests with Daphnia Magna. Annual Book of ASTM Standards,Vol. E 1193, 765–781. Philadelphia: ASTM.Radjenović, J., Petrović, M., & Barceló, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831-841. doi:10.1016/j.watres.2008.11.043Lin, A. Y.-C., Lin, C.-A., Tung, H.-H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1-3), 242-250. doi:10.1016/j.jhazmat.2010.07.017Yang, S.-F., Lin, C.-F., Yu-Chen Lin, A., & Andy Hong, P.-K. (2011). Sorption and biodegradation of sulfonamide antibiotics by activated sludge: Experimental assessment using batch data obtained under aerobic conditions. Water Research, 45(11), 3389-3397. doi:10.1016/j.watres.2011.03.052Ternes, T. A., Herrmann, N., Bonerz, M., Knacker, T., Siegrist, H., & Joss, A. (2004). A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Research, 38(19), 4075-4084. doi:10.1016/j.watres.2004.07.015Stevens-Garmon, J., Drewes, J. E., Khan, S. J., McDonald, J. A., & Dickenson, E. R. V. (2011). Sorption of emerging trace organic compounds onto wastewater sludge solids. Water Research, 45(11), 3417-3426. doi:10.1016/j.watres.2011.03.056Dionisi, D., Bertin, L., Bornoroni, L., Capodicasa, S., Papini, M. P., & Fava, F. (2006). Removal of organic xenobiotics in activated sludges under aerobic conditions and anaerobic digestion of the adsorbed species. Journal of Chemical Technology & Biotechnology, 81(9), 1496-1505. doi:10.1002/jctb.1561Byrns, G. (2001). The fate of xenobiotic organic compounds in wastewater treatment plants. Water Research, 35(10), 2523-2533. doi:10.1016/s0043-1354(00)00529-7Hyland, K. C., Dickenson, E. R. V., Drewes, J. E., & Higgins, C. P. (2012). Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Research, 46(6), 1958-1968. doi:10.1016/j.watres.2012.01.012Yang, S.-F., Lin, C.-F., Wu, C.-J., Ng, K.-K., Yu-Chen Lin, A., & Andy Hong, P.-K. (2012). Fate of sulfonamide antibiotics in contact with activated sludge – Sorption and biodegradation. Water Research, 46(4), 1301-1308. doi:10.1016/j.watres.2011.12.035Feng, W., & Nansheng, D. (2000). Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere, 41(8), 1137-1147. doi:10.1016/s0045-6535(00)00024-2Rodríguez, E. M., Fernández, G., Álvarez, P. M., Hernández, R., & Beltrán, F. J. (2011). Photocatalytic degradation of organics in water in the presence of iron oxides: Effects of pH and light source. Applied Catalysis B: Environmental, 102(3-4), 572-583. doi:10.1016/j.apcatb.2010.12.041Beltrán, F. J., Aguinaco, A., García-Araya, J. F., & Oropesa, A. (2008). Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Research, 42(14), 3799-3808. doi:10.1016/j.watres.2008.07.019García-Araya, J. F., Beltrán, F. J., & Aguinaco, A. (2010). Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. Journal of Chemical Technology & Biotechnology, 85(6), 798-804. doi:10.1002/jctb.2363Rivas, F. J., Beltrán, F. J., & Encinas, A. (2012). Removal of emergent contaminants: Integration of ozone and photocatalysis. Journal of Environmental Management, 100, 10-15. doi:10.1016/j.jenvman.2012.01.025Rivas, F. J., Beltrán, F. J., Gimeno, O., & Acedo, B. (2001). Wet Air Oxidation Of Wastewater From Olive Oil Mills. Chemical Engineering & Technology, 24(4), 415-421. doi:10.1002/1521-4125(200104)24:43.0.co;2-cGIMENO, O., CARBAJO, M., BELTRAN, F., & RIVAS, F. (2005). Phenol and substituted phenols AOPs remediation. Journal of Hazardous Materials, 119(1-3), 99-108. doi:10.1016/j.jhazmat.2004.11.024Beltrán, F. J., Gimeno, O., Rivas, F. J., & Carbajo, M. (2006). Photocatalytic ozonation of gallic acid in water. Journal of Chemical Technology & Biotechnology, 81(11), 1787-1796. doi:10.1002/jctb.1605Aguinaco, A., Beltrán, F. J., García-Araya, J. F., & Oropesa, A. (2012). Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: Influence of variables. Chemical Engineering Journal, 189-190, 275-282. doi:10.1016/j.cej.2012.02.072Trovó, A. G., Pupo Nogueira, R. F., Agüera, A., Fernandez-Alba, A. R., & Malato, S. (2011). Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Research, 45(3), 1394-1402. doi:10.1016/j.watres.2010.10.029Trovó, A. G., Pupo Nogueira, R. F., Agüera, A., Fernandez-Alba, A. R., & Malato, S. (2012). Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Research, 46(16), 5374-5380. doi:10.1016/j.watres.2012.07.015Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—II. Water Research, 17(2), 185-194. doi:10.1016/0043-1354(83)90099-4Javier Rivas, F., Sagasti, J., Encinas, A., & Gimeno, O. (2011). Contaminants abatement by ozone in secondary effluents. Evaluation of second-order rate constants. Journal of Chemical Technology & Biotechnology, 86(8), 1058-1066. doi:10.1002/jctb.2609Huber, M. M., Canonica, S., Park, G.-Y., & von Gunten, U. (2003). Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology, 37(5), 1016-1024. doi:10.1021/es025896hReal, F. J., Acero, J. L., Benitez, F. J., Roldán, G., & Fernández, L. C. (2010). Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems. Chemical Engineering Journal, 160(1), 72-78. doi:10.1016/j.cej.2010.03.009Benner, J., Salhi, E., Ternes, T., & von Gunten, U. (2008). Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Research, 42(12), 3003-3012. doi:10.1016/j.watres.2008.04.002Beltrán, F. J., Aguinaco, A., & García-Araya, J. F. (2009). Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Water Research, 43(5), 1359-1369. doi:10.1016/j.watres.2008.12.015Johnson, P. N., & Davis, R. A. (1996). Diffusivity of Ozone in Water. Journal of Chemical & Engineering Data, 41(6), 1485-1487. doi:10.1021/je9602125Beltrán, F. J. (1995). Theoretical Aspects Of The Kinetics Of Competitive Ozone Reactions In Water. Ozone: Science & Engineering, 17(2), 163-181. doi:10.1080/0191951950854754

    Similar works