8 research outputs found
How does local mining impact on rural immigration: case of Mongolia
Includes bibliographical references.Presented at the Building resilience of Mongolian rangelands: a trans-disciplinary research conference held on June 9-10, 2015 in Ulaanbaatar, Mongolia.After 70 years of communist regime, Mongolia chose a radical transition for democracy and a market economy in 1990. Since the 2000s, the Mongolian government has been promoting the mining industry to increase its foreign exchanges. The mining sector may offer local job opportunities and revenues, but might also cause loss and degradation of pasture land the local people depend on. An empirical study is conducted to investigate whether the immigration of rural people from a mining area is different from that of a non-mining area using a probit model based on a 2013 workforce survey of Mongolia. The result shows that mining soums receive fewer outsiders than the non-mining soums, suggesting local mining activities exert limited economic linkage in local community for a case of Mongolia
Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau
By applying the concept of the coupled natural and human system (CNH), we compared spatiotemporal changes in livestock (LSK), land cover, and ecosystem production to understand the relative roles that natural and social driving forces have on CNH dynamics on the Mongolia plateau. We used socioeconomic and physical data at prefecture level for Inner Mongolia and Mongolia from 1981 through 2010 to represent changes in net primary productivity (NPP), enhanced vegetation index (EVI), precipitation, annual average temperature, LSK, livestock density (LSKD), land cover change (LCC), gross domestic production (GDP), and population (POP). The ratios such as LSK:NPP, LSKD: EVI, LSKD:albedo, LSK:POP, and LSK:GDP were examined and compared between Inner Mongolia and Mongolia, and structural equation modeling (SEM) was applied to quantify the complex interactions. Substantial differences in LSK, POP, and economic development were found among the biomes and between Inner Mongolia and Mongolia. When various indicators for policy shifts—such as the World Trade Organization (WTO) for China, the Third Campaign to Reclaim Abandoned Agriculture Lands (ATAR-3), and the Grain for Green Program for China (GFG)—were added into our SEM, the results showed significant change in the strength of the above relationships. After China joined the WTO, the relationships in Inner Mongolia between LSKD:LCC and LSKD:NPP were immensely strengthened, whereas relationships in NPP:LCC were weakened. In Mongolia, the ATAR-3 program first appeared to be an insignificant policy, but the Collapse of the Soviet Union enhanced the correlation between LSKD:LCC, weakened the connection of LCC:NPP, and did not affect LSKD:NPP. We conclude that human influences on the Mongolian CNH system exceeded those of the biophysical changes, but that the significance varies in time and per biome, as well as between Inner Mongolia and Mongolia
Evolution of common resource tenure and governing: evidence from pastureland in Mongolia Plateau
Includes bibliographical references.Presented at the Building resilience of Mongolian rangelands: a trans-disciplinary research conference held on June 9-10, 2015 in Ulaanbaatar, Mongolia.Land tenure is to define who hold the land as well as the relationship between tenant and the lord. Most fundamentally tenure and changing tenure is capturing the value of the resource. The nature of the resource and changing relative scarcity are essential to induce or lead evolution of land tenure. Pasture resources have been held in open access and communal tenure for much of the long history on Mongolia Plateau because of the abundant resource with low population density. Historically pasture tenure in this region has been evolving from open and semi-open access to communal tenure (control) to more private ownership, although other forces like political system can only cause temporary departure from the general patterns. Presently the variety of tenure arrangements largely reflects the scarcity of the pastoral resources: Mongolia is still primarily adopting semi-open access with community governing although state is viewed as sole ownership, while Inner Mongolia is more directing privatization of at least the use rights
Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau
Context: The Mongolian Plateau, comprising Inner Mongolia, China (IM) and Mongolia (MG) is undergoing consistent warming and accelerated land cover/land use change. Extensive modifications of water-limited regions can alter ecosystem function and processes; hence, it is important to differentiate the impacts of human activities and precipitation dynamics on vegetation productivity.
Objectives: This study distinguished between human-induced and precipitation-driven changes in vegetation cover on the plateau across biome, vegetation type and administrative divisions.
Methods: Non-parametric trend tests were applied to the time series of vegetation indices (VI) derived from MODIS and AVHRR and precipitation from TRMM and MERRA reanalysis data. VI residuals adjusted for rainfall were obtained from the regression between growing season maximum VI and monthly accumulated rainfall (June–August) and were used to detect human-induced trends in vegetation productivity during 1981–2010. The total livestock and population density trends were identified and then used to explain the VI residual trends. Results The slope of precipitation-adjusted EVI and EVI2 residuals were negatively correlated to total livestock density (R2 = 0.59 and 0.16, p \u3c 0.05) in MG and positively correlated with total population density (R2 = 0.31, p \u3c 0.05) in IM. The slope of precipitation-adjusted EVI and EVI2 residuals were also negatively correlated with goat density (R2 = 0.59 and 0.19, p \u3c 0.05) and sheep density in MG (R2 = 0.59 and 0.13, p \u3c 0.05) but not in IM. Conclusions Some administrative subdivisions in IM and MG showed decreasing trends in VI residuals. These trends could be attributed to increasing livestock or population density and changes in livestock herd composition. Other subdivisions showed increasing trends residuals, suggesting that the vegetation cover increase could be attributed to conservation efforts
Sustainability challenges for the social-environmental systems across the Asian Drylands Belt
This paper synthesizes the contemporary challenges for the sustainability of the social-environmental system (SES) across a geographically, environmentally, and geopolitically diverse region - the Asian Drylands Belt (ADB). This region includes 18 political entities, covering 10.3% of global land area and 30% of total global drylands. At the present time, the ADB is confronted with a unique set of environmental and socioeconomic changes including water shortage-related environmental challenges and dramatic institutional changes since the collapse of the Union of Soviet Socialist Republics. The SES of the ADB is assessed using a conceptual framework rooted in the three pillars of sustainability science: social, economic, and ecological systems. The complex dynamics are explored with biophysical, socioeconomic, institutional, and local context-dependent mechanisms with a focus on institutions and land use and land cover change (LULCC) as important drivers of SES dynamics. This paper also discusses the following five pressing, practical challenges for the sustainability of the ADB SES: (a) reduced water quantity and quality under warming, drying, and escalating extreme events, (b) continued, if not intensifying, geopolitical conflicts, (c) volatile, uncertain, and shifting socioeconomic structures, (d) globalization and cross-country influences, and (e) intensification and shifts in LULCC. To meet the varied challenges across the region, place-based, context-dependent transdisciplinary approaches are needed to focus on the human-environment interactions within and between regional landscapes with explicit consideration of specific forcings and regulatory mechanisms. Future work focused on this region should also assess the role of the following mechanisms that may moderate SES dynamics: socioeconomic regulating mechanisms, biophysical regulating mechanisms, regional and national institutional regulating mechanisms, and localized institutional regulating mechanisms
Sustainability challenges for the social-environmental systems across the Asian Drylands Belt
Abstract This paper synthesizes the contemporary challenges for the sustainability of the social-environmental system (SES) across a geographically, environmentally, and geopolitically diverse region—the Asian Drylands Belt (ADB). This region includes 18 political entities, covering 10.3% of global land area and 30% of total global drylands. At the present time, the ADB is confronted with a unique set of environmental and socioeconomic changes including water shortage-related environmental challenges and dramatic institutional changes since the collapse of the Union of Soviet Socialist Republics. The SES of the ADB is assessed using a conceptual framework rooted in the three pillars of sustainability science: social, economic, and ecological systems. The complex dynamics are explored with biophysical, socioeconomic, institutional, and local context-dependent mechanisms with a focus on institutions and land use and land cover change (LULCC) as important drivers of SES dynamics. This paper also discusses the following five pressing, practical challenges for the sustainability of the ADB SES: (a) reduced water quantity and quality under warming, drying, and escalating extreme events, (b) continued, if not intensifying, geopolitical conflicts, (c) volatile, uncertain, and shifting socioeconomic structures, (d) globalization and cross-country influences, and (e) intensification and shifts in LULCC. To meet the varied challenges across the region, place-based, context-dependent transdisciplinary approaches are needed to focus on the human-environment interactions within and between regional landscapes with explicit consideration of specific forcings and regulatory mechanisms. Future work focused on this region should also assess the role of the following mechanisms that may moderate SES dynamics: socioeconomic regulating mechanisms, biophysical regulating mechanisms, regional and national institutional regulating mechanisms, and localized institutional regulating mechanisms.Abstract This paper synthesizes the contemporary challenges for the sustainability of the social-environmental system (SES) across a geographically, environmentally, and geopolitically diverse region—the Asian Drylands Belt (ADB). This region includes 18 political entities, covering 10.3% of global land area and 30% of total global drylands. At the present time, the ADB is confronted with a unique set of environmental and socioeconomic changes including water shortage-related environmental challenges and dramatic institutional changes since the collapse of the Union of Soviet Socialist Republics. The SES of the ADB is assessed using a conceptual framework rooted in the three pillars of sustainability science: social, economic, and ecological systems. The complex dynamics are explored with biophysical, socioeconomic, institutional, and local context-dependent mechanisms with a focus on institutions and land use and land cover change (LULCC) as important drivers of SES dynamics. This paper also discusses the following five pressing, practical challenges for the sustainability of the ADB SES: (a) reduced water quantity and quality under warming, drying, and escalating extreme events, (b) continued, if not intensifying, geopolitical conflicts, (c) volatile, uncertain, and shifting socioeconomic structures, (d) globalization and cross-country influences, and (e) intensification and shifts in LULCC. To meet the varied challenges across the region, place-based, context-dependent transdisciplinary approaches are needed to focus on the human-environment interactions within and between regional landscapes with explicit consideration of specific forcings and regulatory mechanisms. Future work focused on this region should also assess the role of the following mechanisms that may moderate SES dynamics: socioeconomic regulating mechanisms, biophysical regulating mechanisms, regional and national institutional regulating mechanisms, and localized institutional regulating mechanisms.Fulbright Global ScholarDevelopment Program of ChinaNational Key ResearchBasic Frontier Science Research Program of the Chinese Academy of SciencesLCLUCGeorge Washington Universityhttp://dx.doi.org/10.13039/100007108NS