1,908 research outputs found

    Supernova Reverse Shocks and SiC Growth

    Get PDF
    We present new mechanisms by which the isotopic compositions of X-type grains of presolar SiC are altered by reverse shocks in Type II supernovae. We address three epochs of reverse shocks: pressure wave from the H envelope near t = 106^6s; reverse shock from the presupernova wind near 108−109^8-10^9s; reverse shock from the ISM near 1010^{10}s. Using 1-D hydrodynamics we show that the first creates a dense shell of Si and C atoms near 106^6s in which the SiC surely condenses. The second reverse shock causes precondensed grains to move rapidly forward through decelerated gas of different isotopic composition, during which implantation, sputtering and further condensation occur simultaneously. The third reverse shock causes only further ion implantation and sputtering, which may affect trace element isotopic compositions. Using a 25M⊙_{\odot} supernova model we propose solutions to the following unsolved questions: where does SiC condense?; why does SiC condense in preference to graphite?; why is condensed SiC 28^{28}Si-rich?; why is O richness no obstacle to SiC condensation?; how many atoms of each isotope are impacted by a grain that condenses at time t0_0 at radial coordinate r0_0? These many considerations are put forward as a road map for interpreting SiC X grains found in meteorites and their meaning for supernova physics.Comment: 28 pages, 14 figures, animation for Figure 3 and machine-readable Table 3 can be found at http://antares.steelangel.com/~edeneau/supernova/DHC_2003, Submitted to Ap

    Flux Rope Formation Preceding Coronal Mass Ejection Onset

    Full text link
    We analyse the evolution of a sigmoidal (S shaped) active region toward eruption, which includes a coronal mass ejection (CME) but leaves part of the filament in place. The X-ray sigmoid is found to trace out three different magnetic topologies in succession: a highly sheared arcade of coronal loops in its long-lived phase, a bald-patch separatrix surface (BPSS) in the hours before the CME, and the first flare loops in its major transient intensity enhancement. The coronal evolution is driven by photospheric changes which involve the convergence and cancellation of flux elements under the sigmoid and filament. The data yield unambiguous evidence for the existence of a BPSS, and hence a flux rope, in the corona prior to the onset of the CME.Comment: ApJ Letters, in pres

    Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State

    Get PDF
    To understand the physics of solar flares, including the local reorganization of the magnetic field and the acceleration of energetic particles, we have first to estimate the free magnetic energy available for such phenomena, which can be converted into kinetic and thermal energy. The free magnetic energy is the excess energy of a magnetic configuration compared to the minimum-energy state, which is a linear force-free field if the magnetic helicity of the configuration is conserved. We investigate the values of the free magnetic energy estimated from either the excess energy in extrapolated fields or the magnetic virial theorem. For four different active regions, we have reconstructed the nonlinear force-free field and the linear force-free field corresponding to the minimum-energy state. The free magnetic energies are then computed. From the energy budget and the observed magnetic activity in the active region, we conclude that the free energy above the minimum-energy state gives a better estimate and more insights into the flare process than the free energy above the potential field state

    Evolution of magnetic fields and energetics of flares in active region 8210

    Get PDF
    To better understand eruptive events in the solar corona, we combine sequences of multi-wavelength observations and modelling of the coronal magnetic field of NOAA AR 8210, a highly flare-productive active region. From the photosphere to the corona, the observations give us information about the motion of magnetic elements (photospheric magnetograms), the location of flares (e.g., Hα\alpha, EUV or soft X-ray brightenings), and the type of events (Hα\alpha blueshift events). Assuming that the evolution of the coronal magnetic field above an active region can be described by successive equilibria, we follow in time the magnetic changes of the 3D nonlinear force-free (nlff) fields reconstructed from a time series of photospheric vector magnetograms. We apply this method to AR 8210 observed on May 1, 1998 between 17:00 UT and 21:40 UT. We identify two types of horizontal photospheric motions that can drive an eruption: a clockwise rotation of the sunspot, and a fast motion of an emerging polarity. The reconstructed nlff coronal fields give us a scenario of the confined flares observed in AR 8210: the slow sunspot rotation enables the occurence of flare by a reconnection process close to a separatrix surface whereas the fast motion is associated with small-scale reconnections but no detectable flaring activity. We also study the injection rates of magnetic energy, Poynting flux and relative magnetic helicity through the photosphere and into the corona. The injection of magnetic energy by transverse photospheric motions is found to be correlated with the storage of energy in the corona and then the release by flaring activity. The magnetic helicity derived from the magnetic field and the vector potential of the nlff configuration is computed in the coronal volume. The magnetic helicity evolution shows that AR 8210 is dominated by the mutual helicity between the closed and potential fields and not by the self helicity of the closed field which characterizes the twist of confined flux bundles. We conclude that for AR 8210 the complex topology is a more important factor than the twist in the eruption process

    STEREO quadrature observations of coronal dimming at the onset of mini-CMEs

    Full text link
    Context: Using unique quadrature observations with the two STEREO spacecraft, we investigate coronal dimmings at the onset of small-scale eruptions. In CMEs they are believed to indicate the opening up of the coronal magnetic fields at the start of the eruption. Aims: It is to determine whether coronal dimming seen in small-scale eruptions starts before or after chromospheric plasma ejection. Methods: One STEREO spacecraft obtained high cadence, 75 s, images in the He II 304A channel, and the other simultaneous images in the Fe IX/FeX 171A channel. We concentrate on two well-positioned chromospheric eruptions that occurred at disk center in the 171A images, and on the limb in 304A. One was in the quiet Sun and the other was in an equatorial coronal hole. We compare the timing of chromospheric eruption seen in the 304A limb images with the brightenings and dimmings seen on disk in the 171A images. Further we use off-limb images of the low frequency 171A power to infer the coronal structure near the eruptions. Results: In both the quiet Sun and the coronal hole eruption, on disk 171A dimming was seen before the chromospheric eruption, and in both cases it extends beyond the site of the chromospheric eruption. The quiet Sun eruption occurred on the outer edge of the enclosing magnetic field of a prominence and may be related to a small disruption of the prominence just before the 171A dimming. Conclusions: These small-scale chromospheric eruptions started with a dimming in coronal emission just like their larger counterparts. We therefore suggest that a fundamental step in triggering them was the removal of overlying coronal field.Comment: 4 pages, 8 figures. To appear A&A Letters. Movies accompanying this Letter are at http://www.mps.mpg.de/data/outgoing/innes/dims
    • 

    corecore