42,943 research outputs found
PrivateJobMatch: A Privacy-Oriented Deferred Multi-Match Recommender System for Stable Employment
Coordination failure reduces match quality among employers and candidates in
the job market, resulting in a large number of unfilled positions and/or
unstable, short-term employment. Centralized job search engines provide a
platform that connects directly employers with job-seekers. However, they
require users to disclose a significant amount of personal data, i.e., build a
user profile, in order to provide meaningful recommendations. In this paper, we
present PrivateJobMatch -- a privacy-oriented deferred multi-match recommender
system -- which generates stable pairings while requiring users to provide only
a partial ranking of their preferences. PrivateJobMatch explores a series of
adaptations of the game-theoretic Gale-Shapley deferred-acceptance algorithm
which combine the flexibility of decentralized markets with the intelligence of
centralized matching. We identify the shortcomings of the original algorithm
when applied to a job market and propose novel solutions that rely on machine
learning techniques. Experimental results on real and synthetic data confirm
the benefits of the proposed algorithms across several quality measures. Over
the past year, we have implemented a PrivateJobMatch prototype and deployed it
in an active job market economy. Using the gathered real-user preference data,
we find that the match-recommendations are superior to a typical decentralized
job market---while requiring only a partial ranking of the user preferences.Comment: 45 pages, 28 figures, RecSys 201
- …
