3 research outputs found

    Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells

    No full text
    Cells perceive overtime complex sequences of receptor stimulation that they integrate to mount an appropriate response. Yet, the influence of signal dynamics on cell responses has been poorly characterized due to technical limitations. Here, we present a generalizable approach to control receptor stimulation on unmodified primary cells. Indeed, for applications on primary murine T cells, we have engineered the LiTe system, a new recombinant optogenetics-based Light-inducible T cell engager which allows tunable and reversible spatiotemporal control of the T Cell Receptor (TCR) stimulation. We also provided in vitro evidence that this system enables efficient T cell activation with light, leading to cytokine secretion or tumor cell killing. Using specific time-gated stimulations, we have been able to orient the outcome of the activation of T cells. Overall, the LiTe system constitutes a versatile ON/OFF molecular switch allowing to decipher the cellular response to stimulation dynamics. Its original control over T cell activation opens new avenues for future precision cancer immunotherapy

    Light-inducible T cell engagers trigger, tune and shape the activation of primary T cells

    No full text
    International audienceCells perceive overtime complex sequences of receptor stimulation that they integrate to mount an appropriate response. Yet, the influence of signal dynamics on cell responses has been poorly characterized due to technical limitations. Here, we present a generalizable approach to control receptor stimulation on unmodified primary cells. Indeed, for applications on primary murine T cells, we have engineered the LiTe system, a new recombinant optogenetics-based Light-inducible T cell engager which allows tunable and reversible spatiotemporal control of the T Cell Receptor (TCR) stimulation. We also provided in vitro evidence that this system enables efficient T cell activation with light, leading to cytokine secretion or tumor cell killing. Using specific time-gated stimulations, we have been able to orient the outcome of the activation of T cells. Overall, the LiTe system constitutes a versatile ON/OFF molecular switch allowing to decipher the cellular response to stimulation dynamics. Its original control over T cell activation opens new avenues for future precision cancer immunotherapy

    Phenotype and Reactivity of Lymphocytes Expanded from Benign Prostate Hyperplasic Tissues and Prostate Cancer

    No full text
    Benign prostate hyperplasia (BPH) is a frequent condition in aging men, which affects life quality, causing principally lower urinary tract symptoms. Epidemiologic studies suggest that BPH may raise the risk of developing prostate cancer (PCa), most likely promoting a chronic inflammatory environment. Studies aiming at elucidating the link and risk factors that connect BPH and PCa are urgently needed to develop prevention strategies. The BPH microenvironment, similar to the PCa one, increases immune infiltration of the prostate, but, in contrast to PCa, immunosuppression may not be established yet. In this study, we found that prostate-infiltrating lymphocytes (PILs) expanded from hyperplastic prostate tissue recognized tumor-associated antigens (TAA) and autologous tissue, regardless of the presence of tumor cells. PILs expanded from BPH samples of patients with PCa, however, seem to respond more strongly to autologous tissue. Phenotypic characterization of the infiltrating PILs revealed a trend towards better expanding CD4+ T cells in infiltrates derived from PCa, but no significant differences were found. These findings suggest that T cell tolerance is compromised in BPH-affected prostates, likely due to qualitative or quantitative alterations of the antigenic landscape. Our data support the hypothesis that BPH increases the risk of PCa and may pave the way for new personalized preventive vaccine strategies for these patients
    corecore