25 research outputs found

    Dose-Ranging Plasma and Genital Tissue Pharmacokinetics and Biodegradation of Ultra-Long-Acting Cabotegravir In Situ Forming Implant

    Get PDF
    HIV continues to affect millions of men and women worldwide. The development of long-acting injectables for HIV prevention can overcome adherence challenges with daily oral prevention regimens by reducing dosing frequency and stigma. We previously developed an ultra-long-acting injectable, biodegradable, and removeable in situ forming implant (ISFI) with cabotegravir (CAB) that demonstrated protection after multiple rectal SHIV challenges in female macaques. Here, we sought to further characterize CAB ISFI pharmacokinetics (PK) in mice by assessing the effect of dose and number of injections on CAB PK, time to completion of CAB release and polymer degradation, long-term genital tissue PK, and CAB PK tail after implant removal. CAB concentrations in plasma were above the benchmark for protection for 11–12 months with proportionality between dose and drug exposure. CAB ISFI exhibited high concentrations in vaginal, cervical, and rectal tissues for up to 180 days. Furthermore, depots were easily retrievable up to 180 days post-administration with up to 34% residual CAB and near complete (85%) polymer degradation quantified in depots ex vivo. After depot removal, results demonstrated a median 11-fold decline in CAB plasma concentrations across all doses. Ultimately, this study provided critical PK information for the CAB ISFI formulation that could aid in its future translation to clinical studies

    Antiretroviral concentrations and surrogate measures of efficacy in the brain tissue and CSF of preclinical species

    No full text
    1. Antiretroviral concentrations in cerebrospinal fluid (CSF) are used as surrogate for brain tissue, although sparse data support this. We quantified antiretrovirals in brain tissue across preclinical models, compared them to CSF, and calculated 90% inhibitory quotients (IQ90) for nonhuman primate (NHP) brain tissue. Spatial distribution of efavirenz was performed by mass-spectrometry imaging (MSI). 2. HIV or RT-SHIV-infected and uninfected animals from two humanized mouse models (hemopoietic-stem cell/RAG2-, n = 36; bone marrow-liver-thymus/BLT, n =13) and an NHP model (rhesus macaque, n =18) were dosed with six antiretrovirals. Brain tissue, CSF (NHPs), and plasma were collected at necropsy. Drug concentrations were measured by LC-MS/MS. Rapid equilibrium dialysis determined protein binding in NHP brain. 3. Brain tissue penetration of most antiretrovirals were \u3e10-fold lower (p \u3c 0.02) in humanized mice than NHPs. NHP CSF concentrations were \u3e13-fold lower (p \u3c0.02) than brain tissue with poor agreement except for efavirenz (r = 0.91, p = 0.001). Despite 97% brain tissue protein binding, efavirenz achieved IQ90\u3e1 in all animals and 2-fold greater white versus gray matter concentration. 4. Brain tissue penetration varied across animal models for all antiretrovirals except raltegravir, and extrapolating brain tissue concentrations between models should be avoided. With the exception of efavirenz, CSF is not a surrogate for brain tissue concentrations

    Predicting Efavirenz Concentrations in the Brain Tissue of HIV‐Infected Individuals and Exploring their Relationship to Neurocognitive Impairment

    No full text
    Sparse data exist on the penetration of antiretrovirals into brain tissue. In this work, we present a framework to use efavirenz (EFV) pharmacokinetic (PK) data in plasma, cerebrospinal fluid (CSF), and brain tissue of eight rhesus macaques to predict brain tissue concentrations in HIV‐infected individuals. We then perform exposure‐response analysis with the model‐predicted EFV area under the concentration‐time curve (AUC) and neurocognitive scores collected from a group of 24 HIV‐infected participants. Adult rhesus macaques were dosed daily with 200 mg EFV (as part of a four‐drug regimen) for 10 days. Plasma was collected at 8 time points over 10 days and at necropsy, whereas CSF and brain tissue were collected at necropsy. In the clinical study, data were obtained from one paired plasma and CSF sample of participants prescribed EFV, and neuropsychological test evaluations were administered across 15 domains. PK modeling was performed using ADAPT version 5.0 Biomedical Simulation Resource, Los Angeles, CA) with the iterative two‐stage estimation method. An eight‐compartment model best described EFV distribution across the plasma, CSF, and brain tissue of rhesus macaques and humans. Model‐predicted median brain tissue concentrations in humans were 31 and 8,000 ng/mL, respectively. Model‐predicted brain tissue AUC was highly correlated with plasma AUC (γ = 0.99, P  0.05). This analysis provides an approach to estimate PK the brain tissue in order to perform PK/pharmacodynamic analyses at the target site
    corecore