21 research outputs found

    The role of von Willebrand factor in breast cancer metastasis

    No full text
    Breast cancer is the most common female cancer globally, with approximately 12% of patients eventually developing metastatic disease. Critically, limited effective treatment options exist for metastatic breast cancer. Recently, von Willebrand factor (VWF), a haemostatic plasma glycoprotein, has been shown to play an important role in tumour progression and metastasis. In breast cancer, a significant rise in the plasma levels of VWF has been reported in patients with malignant disease compared to benign conditions and healthy controls, with an even greater increase seen in patients with disseminated disease. Direct interactions between VWF, tumour cells, platelets and endothelial cells may promote haematogenous dissemination and thus the formation of metastatic foci. Intriguingly, patients with metastatic disease have unusually large VWF multimers. This observation has been proposed to be a result of a dysfunctional or deficiency of VWF-cleaving protease activity, ADAMTS-13 activity, which may then regulate the platelet-tumour adhesive interactions in the metastatic process. In this review, we provide an overview of VWF in orchestrating the pathological process of breast cancer dissemination, and provide supporting evidence of the role of VWF in mediating metastatic breast cancer

    5-AZA-dC induces epigenetic changes associated with modified glycosylation of secreted glycoproteins and increased EMT and migration in chemo-sensitive cancer cells

    No full text
    Background: Glycosylation, one of the most fundamental post-translational modifications, is altered in cancer and is subject in part, to epigenetic regulation. As there are many epigenetic-targeted therapies currently in clinical trials for the treatment of a variety of cancers, it is important to understand the impact epi-therapeutics have on glycosylation. Results: Ovarian and triple negative breast cancer cells were treated with the DNA methyltransferase inhibitor, 5-AZA-2-deoxycytidine (5-AZA-dC). Branching and sialylation were increased on secreted N-glycans from chemo-sensitive/non-metastatic cell lines following treatment with 5-AZA-dC. These changes correlated with increased mRNA expression levels in MGAT5 and ST3GAL4 transcripts in ovarian cancer cell lines. Using siRNA transient knock down of GATA2 and GATA3 transcription factors, we show that these regulate the glycosyltransferases ST3GAL4 and MGAT5, respectively. Moreover, 5-AZA-dC-treated cells displayed an increase in migration, with a greater effect seen in chemo-sensitive cell lines. Western blots showed an increase in apoptotic and senescence (p21) markers in all 5-AZA-dC-treated cells. The alterations seen in N-glycans from secreted glycoproteins in 5-AZA-dC-treated breast and ovarian cancer cells were similar to the N-glycans previously known to potentiate tumour cell survival. Conclusions: While the FDA has approved epi-therapeutics for some cancer treatments, their global effect is still not fully understood. This study gives insight into the effects that epigenetic alterations have on cancer cell glycosylation, and how this potentially impacts on the overall fate of those cells.</p

    Clarifying the mechanisms and resources that enable the reciprocal involvement of seldom heard groups in health and social care research: a collaborative rapid realist review process

    Get PDF
    Objective: Public and patient involvement is increasingly embedded as a core activity in research funding calls and best practice guidelines. However, there is recognition of the challenges that prevail to achieve genuine and equitable forms of engagement. Our objective was to identify the mechanisms and resources that enable the reciprocal involvement of seldom heard groups in health and social care research. Methods: A rapid realist review of the literature that included: (a) a systematic search of CINAHL, PsycINFO, PubMed and Open Grey (2007-2017); (b) documents provided by expert panel members of relevant journals and grey literature. Six reference panels were undertaken with homeless, women’s, transgender, disability and Traveller and Roma organizations to capture local insights. Data were extracted into a theory-based grid linking context to behaviour change policy categories. Main results: From the review, 20 documents were identified and combined with the reference panel summaries. The expert panel reached consensus about 33 programme theories. These relate to environmental and social planning (7); service provision (6); guidelines (4); fiscal measures (6); communication and marketing (4); and regulation and legislation (6). Conclusions: While there is growing evidence of the merits of undertaking PPI, this rarely extends to the meaningful involvement of seldom heard groups. The 33 programme theories agreed by the expert panel point to a variety of mechanisms and resources that need to be considered. Many of the programme theories identified point to the need for a radical shift in current practice to enable the reciprocal involvement of seldom heard groups

    Hypoxia alters epigenetic and N-glycosylation profiles of ovarian and breast cancer cell lines in-vitro

    No full text
    Background: Glycosylation is one of the most fundamental post-translational modifications. Importantly, glycosylation is altered in many cancers. These alterations have been proven to impact on tumor progression and to promote tumor cell survival. From the literature, it is known that there is a clear link between chemoresistance and hypoxia, hypoxia and epigenetics and more recently glycosylation and epigenetics.  Methods and Results: Our objective was to investigate these differential parameters, in an in vitro model of ovarian and breast cancer. Ovarian (A2780, A2780cis, PEO1, PEO4) and triple negative breast cancer (TNBC) (MDA-MB-231 and MDA-MB-436) cells were exposed to differential hypoxic conditions (0.5-2% O2) and compared to normoxia (21% O2). Results demonstrated that in hypoxic conditions some significant changes in glycosylation on the secreted N-glycans from the ovarian and breast cancer cell lines were observed. These included, alterations in oligomannosylated, bisected glycans, glycans with polylactosamine extensions, in branching, galactosylation and sialylation in all cell lines except for PEO1. In general, hypoxia exposed ovarian and TNBC cells also displayed increased epithelial to mesenchymal transition (EMT) and migration, with a greater effect seen in the 0.5% hypoxia exposed samples compared to 1 and 2% hypoxia (p ≤ 0.05). SiRNA transient knock down of GATA2/3 transcription factors resulted in a decrease in the expression of glycosyltransferases ST3GAL4 and MGAT5, which are responsible for sialylation and branching, respectively.  Conclusions: These glycan changes are known to be integral to cancer cell survival and metastases, suggesting a possible mechanism of action, linking GATA2 and 3, and invasiveness of both ovarian and TNBC cells in vitro. </p

    Lipofuscin accumulation and autophagy in glaucomatous human lamina cribrosa cells

    No full text
    Background: Disease associated alterations in the phenotype of lamina cribrosa (LC) cells are implicated in changes occurring at the optic nerve head (ONH) in glaucoma. Lipofuscin, the formation of which is driven by reactive oxygen species (ROS), is an intralysosomal, non-degradable, auto-fluorescent macromolecule which accumulates with age and can affect autophagy - the lysosomal degradation of a cell's constituents. We aimed to compare the content of lipofuscin-like material and markers of autophagy in LC cells from normal and glaucoma donor eyes. Methods: The number and size of peri-nuclear lysosomes were examined by transmission electron microscopy (TEM). Cellular auto-fluorescence was quantified by flow cytometry. Cathepsin K mRNA levels were assessed by PCR. Autophagy protein 5 (Atg5) mRNA and protein levels were analysed by PCR and Western blot. Protein levels of subunits of the microtubule associated proteins (MAP) 1A and 1B, light chain 3 (LC3) I and II were analysed by Western blot. Immunohistochemical staining of LC3-II in ONH sections from normal and glaucomatous donor eyes was performed. Results: A significant increase in the number of peri-nuclear lysosomes [4.1 × 10,000 per high power field (h.p.f.) ± 1.9 vs. 2.0 × 10,000 per h.p.f. ± 1.3, p = 0.002, n = 3] and whole cell auto-fluorescence (83.62 ± 45.1 v 41.01 ± 3.9, p = 0.02, n = 3) was found in glaucomatous LC cells relative to normal LC cells. Glaucomatous LC cells possessed significantly higher levels of Cathepsin K mRNA and Atg5 mRNA and protein. Enhanced levels of LC3-II were found in both LC cells and optic nerve head sections from glaucoma donors. Conclusions: Increased lipofuscin formation is characteristic of LC cells from donors with glaucoma. This finding confirms the importance of oxidative stress in glaucoma pathogenesis. Intracellular lipofuscin accumulation may have important effects on autophagy the modification of which could form the basis for future novel glaucoma treatments.</p

    BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer

    No full text
    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.</p

    The effect of silencing MyD88 and TLR4 mRNA on the chemoresponsive properties of SKOV-3 cells.

    No full text
    <p>SKOV-3 cells were left untransfected (Unt), transfected with negative control siRNA (siNeg), MyD88 targeting siRNA (siMyD88) or TLR4 targeting siRNA (siTLR4). The transfected cells were incubated for 72 hrs before either harvesting for mRNA analysis (A), for protein analysis (B) or treatment with paclitaxel (C). (A) MyD88 and TLR4 mRNA expression levels were evaluated by TaqMan RT-PCR. MyD88 and TLR4 mRNA expression was normalised to that of an endogenous control, B2M, and calibrated to that of untreated cells to establish the relative percentage of mRNA expression (n = 3, mean +SD). (B) MyD88 and TLR4 mRNA expression levels were evaluated by western blot analysis. GAPDH was used as a loading control. (C) Transfected cells were either left untreated, treated with DMSO (vehicle control) or 3.5 nM of paclitaxel (IC25). 48 hrs post treatment, cell viability was assessed by means of the CCK-8 assay. % cell viability rate was calculated by comparing the absorbance values for the vehicle control to the corresponding paclitaxel treated samples. Results are expressed as mean +SD, n = 3; *p<0.05, **p<0.01 (un-paired Student's t-test).</p
    corecore