82 research outputs found

    Gene Expression Profiling in Familial Adenomatous Polyposis Adenomas and Desmoid Disease

    Get PDF
    Gene expression profiling is a powerful method by which alterations in gene expression can be interrogated in a single experiment. The disease familial adenomatous polyposis (FAP) is associated with germline mutations in the APC gene, which result in aberrant β-catenin control. The molecular mechanisms underlying colorectal cancer development in FAP are being characterised but limited information is available about other symptoms that occur in this disorder. Although extremely rare in the general population, desmoid tumours in approximately 10% of FAP patients. The aim of this study was to determine the similarities and differences in gene expression profiles in adenomas and compare them to those observed in desmoid tumours. Illumina whole genome gene expression BeadChips were used to measure gene expression in FAP adenomas and desmoid tumours. Similarities between gene expression profiles and mechanisms important in regulating formation of FAP adenomas and desmoid tumours were identified. This study furthers our understanding of the mechanisms underlying FAP and desmoid tumour formation

    2-Deoxy-D-glucose enhances TRAIL-induced apoptosis in human melanoma cells through XBP-1-mediated up-regulation of TRAIL-R2

    Get PDF
    Background: Past studies have shown that sensitivity of melanoma cells to TRAIL-induced apoptosis is largely correlated with the expression levels of TRAIL death receptors on the cell surface. However, fresh melanoma isolates and melanoma tissue sections express generally low levels of death receptors for TRAIL. The clinical potential of TRAIL in the treatment of melanoma may therefore be limited unless given with agents that increase the cell surface expression of TRAIL death receptors. 2-Deoxy-D-glucose (2-DG) is a synthetic glucose analogue that inhibits glycolysis and glycosylation and blocks cell growth. It has been in clinical evaluation for its potential use as an anticancer agent. In this study, we have examined whether 2-DG and TRAIL interact to enhance their cytotoxicity towards melanoma cells. Results: 2-DG did not kill melanoma cells, but enhanced TRAIL-induced apoptosis in cultured melanoma cells and fresh melanoma isolates. This was associated with increased activation of the caspase cascade and mitochondrial apoptotic pathway, and was blocked by inhibition of TRAIL-R2, and to a lesser extent, inhibition of TRAIL-R1. Treatment with 2-DG up-regulated TRAIL death receptors, in particular, TRAIL-R2, on the melanoma cell surface. Up-regulation of TRAIL-R2 was due to increased transcription that was not dependent on the transcription factors, p53 and CHOP. Instead, the IRE1α and ATF6 pathways of the unfolded protein response that were activated by 2-DG appeared to be involved. Moreover, XBP-1, which is known to be transcriptionally regulated by ATF6 and functionally activated by IRE1α, was found to play an important role in 2-DG-mediated transcriptional up-regulation of TRAIL-R2 in melanoma cells. Conclusion: These results indicate that 2-DG sensitizes human melanoma cells to TRAIL-induced apoptosis by up-regulation of TRAIL-2 via the ATF6/IRE1α/XBP-1 axis of the unfolded protein response. They suggest that 2-DG is a promising agent to increase the therapeutic response to TRAIL in melanoma

    Nitrate-rich vegetables do not lower blood pressure in individuals with mildly elevated blood pressure: A 4-wk randomized controlled crossover trial

    Get PDF
    Background - Emerging evidence suggests that increasing intakes of nitrate-rich vegetables may be an effective approach to reduce blood pressure. Objective - Our primary aim was to determine whether daily consumption of nitrate-rich vegetables over 4 wk would result in lower blood pressure. Design - Thirty participants with prehypertension or untreated grade 1 hypertension were recruited to a randomized controlled crossover trial with 4-wk treatment periods separated by 4-wk washout periods. Participants completed 3 treatments in random order: 1) increased intake (∼200 g/d) of nitrate-rich vegetables [high-nitrate (HN); ∼150 mg nitrate/d], 2) increased intake (∼200 g/d) of nitrate-poor vegetables [low-nitrate (LN); ∼22 mg nitrate/d], and 3) no increase in vegetables (control; ∼6 mg nitrate/d). Compliance was assessed with the use of food diaries and by measuring plasma nitrate and carotenoids. Nitrate metabolism was assessed with the use of plasma, salivary, and urinary nitrate and nitrite concentrations. The primary outcome was blood pressure assessed by using 24-h ambulatory, home, and clinic measurements. Secondary outcomes included measures of arterial stiffness. Results - Plasma nitrate and nitrite concentrations increased with the HN treatment in comparison to the LN and control treatments (P \u3c 0.001). Plasma carotenoids increased with the HN and LN treatments compared with the control (P \u3c 0.01). HN treatment did not reduce systolic blood pressure [24-h ambulatory—HN: 127.4 ± 1.1 mm Hg; LN: 128.6 ± 1.1 mm Hg; control: 126.2 ± 1.1 mm Hg (P = 0.20); home—HN: 127.4 ± 0.7 mm Hg; LN: 128.7 ± 0.7 mm Hg; control: 128.3 ± 0.7 mm Hg (P = 0.36); clinic—HN: 128.4 ± 1.3 mm Hg; LN: 130.3 ± 1.3 mm Hg; control: 129.8 ± 1.3 mm Hg (P = 0.49)] or diastolic blood pressure compared with LN and control treatments (P \u3e 0.05) after adjustment for pretreatment values, treatment period, and treatment order. Similarly, no differences were observed between treatments for arterial stiffness measures (P \u3e 0.05). Conclusion - Increased intake of nitrate-rich vegetables did not lower blood pressure in prehypertensive or untreated grade 1 hypertensive individuals when compared with increased intake of nitrate-poor vegetables and no increase in vegetables

    The effects of vitamin K-rich green leafy vegetables on bone metabolism: a 4-week randomised controlled trial in middle-aged and older individuals

    Get PDF
    Background: High vegetable intake is associated with beneficial effects on bone. However, the mechanisms remain uncertain. Green leafy vegetables are a rich source of vitamin K1, which is known to have large effects on osteoblasts and osteocalcin (OC) metabolism. Objective: To examine the effects of consumption of two to three extra serves of green leafy vegetables daily on bone metabolism. Methods: Thirty individuals (mean age 61.8 ± 9.9 years, 67% male) completed three experimental phases in a randomised controlled crossover design, each lasting four weeks, with a washout period of four weeks between phases (clinical trial registration: ACTRN12615000194561). The three experimental phases were: (i) increased dietary vitamin K1 by consuming green leafy vegetables (H-K, ~200 g/d containing 164.3 [99.5–384.7] μg/d of vitamin K1), (ii) low vitamin K1 by consuming vitamin K1-poor vegetables (L-K, ~200 g/d containing 9.4 [7.7–11.6] μg/d of vitamin K1), and (iii) control (CON) where participants consumed an energy-matched non-vegetable control. OC forms, total OC (tOC), carboxylated OC (cOC) and undercarboxylated OC (ucOC), were measured in serum pre- and post-intervention for each experimental phase using a sandwich-electrochemiluminescence immunoassay. Results: Pre-intervention tOC, ucOC and ucOC:tOC levels were similar between phases (P \u3e .05). Following H-K, but not L-K, tOC, ucOC and ucOC:tOC levels were significantly lower compared to pre-intervention levels (P ≤ .001) and compared to CON (~14%, 31% and 19%, respectively, all P \u3c .05), while cOC remained unchanged. Conclusions: In middle-aged healthy men and women, an easily achieved increase in dietary intake of vitamin K1-rich green leafy vegetables substantially reduces serum tOC and ucOC suggesting increased entry of OC into bone matrix, where it may improve the material property of bone. In conjunction with previous epidemiological and randomised controlled trial data, these findings suggest that interventions to increase vegetable intake over extended periods should include bone end points including fracture risk

    A randomised controlled crossover trial investigating the short-term effects of different types of vegetables on vascular and metabolic function in middle-aged and older adults with mildly elevated blood pressure: the VEgetableS for vaScular hEaLth (VESSEL) study protocol

    Get PDF
    A diet rich in fruits and vegetables is recommended for cardiovascular health. However, the majority of Australians do not consume the recommended number of vegetable servings each day. Furthermore, intakes of vegetables considered to have the greatest cardiovascular benefit are often very low. Results from prospective observational studies indicate that a higher consumption of cruciferous vegetables (e.g. broccoli, cabbage, cauliflower) is associated with lower cardiovascular disease risk. This may be due to the presence of specific nutrients and bioactive compounds found almost exclusively, or at relatively high levels, in cruciferous vegetables. Therefore, the aim of this randomised controlled crossover trial is to determine whether regular consumption of cruciferous vegetables results in short-term improvement in measures related to cardiovascular disease risk, including ambulatory blood pressure, arterial stiffness, glycaemic control, and circulating biomarkers of oxidative stress and inflammation

    Nuclear import receptors are recruited by FG-nucleoporins to rescue hallmarks of TDP-43 proteinopathy

    Get PDF
    Background: Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclear loss-of-function and cytoplasmic toxic gain-of-function phenotypes. While TDP-43 proteinopathy has been associated with defects in nucleocytoplasmic transport, this process is still poorly understood. Here we study the role of karyopherin-β1 (KPNB1) and other nuclear import receptors in regulating TDP-43 pathology. Methods: We used immunostaining, immunoprecipitation, biochemical and toxicity assays in cell lines, primary neuron and organotypic mouse brain slice cultures, to determine the impact of KPNB1 on the solubility, localization, and toxicity of pathological TDP-43 constructs. Postmortem patient brain and spinal cord tissue was stained to assess KPNB1 colocalization with TDP-43 inclusions. Turbidity assays were employed to study the dissolution and prevention of aggregation of recombinant TDP-43 fibrils in vitro. Fly models of TDP-43 proteinopathy were used to determine the effect of KPNB1 on their neurodegenerative phenotype in vivo. Results: We discovered that several members of the nuclear import receptor protein family can reduce the formation of pathological TDP-43 aggregates. Using KPNB1 as a model, we found that its activity depends on the prion-like C-terminal region of TDP-43, which mediates the co-aggregation with phenylalanine and glycine-rich nucleoporins (FG-Nups) such as Nup62. KPNB1 is recruited into these co-aggregates where it acts as a molecular chaperone that reverses aberrant phase transition of Nup62 and TDP-43. These findings are supported by the discovery that Nup62 and KPNB1 are also sequestered into pathological TDP-43 aggregates in ALS/FTD postmortem CNS tissue, and by the identification of the fly ortholog of KPNB1 as a strong protective modifier in Drosophila models of TDP-43 proteinopathy. Our results show that KPNB1 can rescue all hallmarks of TDP-43 pathology, by restoring its solubility and nuclear localization, and reducing neurodegeneration in cellular and animal models of ALS/FTD. Conclusion: Our findings suggest a novel NLS-independent mechanism where, analogous to its canonical role in dissolving the diffusion barrier formed by FG-Nups in the nuclear pore, KPNB1 is recruited into TDP-43/FG-Nup co-aggregates present in TDP-43 proteinopathies and therapeutically reverses their deleterious phase transition and mislocalization, mitigating neurodegeneration. Graphical Abstract: [Figure not available: see fulltext.]

    Matrilineal behavioral and physiological changes following the death of a non-alpha matriarch in rhesus macaque

    Get PDF
    In many species, the loss of alpha matriarchs is associated with a number of negative outcomes such as troop fission, eviction, wounding, and reduced vitality. However, whether the dramatic consequences of their loss are due to their role as an old experienced figure or to their alpha status remains unclear. In a retrospective study, we tested that in a semi-free ranging colony of rhesus macaques (Macaca mulatta), the removal of a non-alpha matriarch, who had a large set of kin, led to changes in behavior and physiological stress within her matriline. Following her removal, her matriline increased in aggression, vigilance, and social grooming. Additionally, hierarchical stability, measured by levels of rank changes, decreased within her matriline, and levels of intense aggression by high-ranking animals were more frequent, as well as matrilineal wounding. Although ordinal rank was positively associated with higher chronic hair cortisol concentrations (HCCs) in the months before the matriarch’s removal, following her removal, only those who experienced large increases in rank within her matriline displayed higher HCCs. Changes in matrilineal stability, aggression, behavior, and HCCs within the other two matrilines in the troop were not evident, although caution is needed due to the small sample sizes. We conclude that the removal of the non-alpha matriarch led to matrilineal instability, characterized by higher levels of aggression and subsequent vigilance, rank changes, physiological stress, and grooming. We suggest that non-alpha matriarchs with a large number of kin and social support can be integral to the stability of matrilines.Division of Intramural Research, National Institute of Child Health and Human Development, 1ZIAHD001107- 3

    P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastatic melanoma represents a major clinical problem. Its incidence continues to rise in western countries and there are currently no curative treatments. While mutation of the <it>P53 </it>tumour suppressor gene is a common feature of many types of cancer, mutational inactivation of <it>P53 </it>in melanoma is uncommon; however, its function often appears abnormal.</p> <p>Methods</p> <p>In this study whole genome bead arrays were used to examine the transcript expression of P53 target genes in extracts from 82 melanoma metastases and 6 melanoma cell lines, to provide a global assessment of aberrant P53 function. The expression of these genes was also examined in extracts derived from diploid human melanocytes and fibroblasts.</p> <p>Results</p> <p>The results indicated that P53 target transcripts involved in apoptosis were under-expressed in melanoma metastases and melanoma cell lines, while those involved in the cell cycle were over-expressed in melanoma cell lines. There was little difference in the transcript expression of P53 target genes between cell lines with null/mutant <it>P53 </it>compared to those with wild-type <it>P53</it>, suggesting that altered expression in melanoma was not related to <it>P53 </it>status. Similarly, down-regulation of P53 by short-hairpin RNA (shRNA) had limited effect on P53 target gene expression in melanoma cells, whereas there were a large number of P53 target genes whose mRNA expression was significantly altered by P53 inhibition in melanocytes. Analysis of whole genome gene expression profiles indicated that the ability of P53 to regulate genes involved in the cell cycle was significantly reduced in melanoma cells. Moreover, inhibition of P53 in melanocytes induced changes in gene expression profiles that were characteristic of melanoma cells and resulted in increased proliferation. Conversely, knockdown of P53 in melanoma cells resulted in decreased proliferation.</p> <p>Conclusions</p> <p>These results indicate that P53 target genes involved in apoptosis and cell cycle regulation are aberrantly expressed in melanoma and that this aberrant functional activity of P53 may contribute to the proliferation of melanoma.</p
    corecore