248 research outputs found

    Examining Seasonal Trends of the Martian Polar Warming with the NASA Ames Mars Global Climate Model

    Get PDF
    The presented work focuses on polar warming as a diagnostic of the mean circulation to increase our understanding of processes that control the mean meridional circulation and transport in the Mars middle atmosphere. The NASA Ames Mars Global Climate Model is utilized to isolate physical processes to determine their impact on polar warming and its seasonal trends

    Upper Boundary Extension of the NASA Ames Mars General Circulation Model

    Get PDF
    Extending the NASA Ames Mars General Circulation Model (MGCM) upper boundary will expand our understanding of the connection between the lower and upper atmosphere of Mars through the middle atmosphere. The extension's main requirements is incorporation of Non-local thermodynamic equilibrium (NLTE) heating (visible) and cooling (infrared). NLTE occurs when energy is exchanged more rapidly with the radiation field (or other energy sources) rather than collisions with other molecules. Without NLTE above approximately 80km/approximately 60km in Mars' atmosphere the IR/visible heating rates are overestimated. Currently NLTE has been applied successfully into the 1D RT code and is in progress for the 3D application

    Using Passive Surveillance to Maintain Elimination as a Public Health Problem for Neglected Tropical Diseases: A Model-Based Exploration.

    Get PDF
    BACKGROUND: Great progress is being made toward the goal of elimination as a public health problem for neglected tropical diseases such as leprosy, human African trypanosomiasis, Buruli ulcer, and visceral leishmaniasis, which relies on intensified disease management and case finding. However, strategies for maintaining this goal are still under discussion. Passive surveillance is a core pillar of a long-term, sustainable surveillance program. METHODS: We use a generic model of disease transmission with slow epidemic growth rates and cases detected through severe symptoms and passive detection to evaluate under what circumstances passive detection alone can keep transmission under control. RESULTS: Reducing the period of infectiousness due to decreasing time to treatment has a small effect on reducing transmission. Therefore, to prevent resurgence, passive surveillance needs to be very efficient. For some diseases, the treatment time and level of passive detection needed to prevent resurgence is unlikely to be obtainable. CONCLUSIONS: The success of a passive surveillance program crucially depends on what proportion of cases are detected, how much of their infectious period is reduced, and the underlying reproduction number of the disease. Modeling suggests that relying on passive detection alone is unlikely to be enough to maintain elimination goals

    Antiapoptotic Actions of Methyl Gallate on Neonatal Rat Cardiac Myocytes Exposed to H 2

    Get PDF
    Reactive oxygen species trigger cardiomyocyte cell death via increased oxidative stress and have been implicated in the pathogenesis of cardiovascular diseases. The prevention of cardiomyocyte apoptosis is a putative therapeutic target in cardioprotection. Polyphenol intake has been associated with reduced incidences of cardiovascular disease and better overall health. Polyphenols like epigallocatechin gallate (EGCG) can reduce apoptosis of cardiomyocytes, resulting in better health outcomes in animal models of cardiac disorders. Here, we analyzed whether the antioxidant N-acetyl cysteine (NAC) or polyphenols EGCG, gallic acid (GA) or methyl gallate (MG) can protect cardiomyocytes from cobalt or H2O2-induced stress. We demonstrate that MG can uphold viability of neonatal rat cardiomyocytes exposed to H2O2 by diminishing intracellular ROS, maintaining mitochondrial membrane potential, augmenting endogenous glutathione, and reducing apoptosis as evidenced by impaired Annexin V/PI staining, prevention of DNA fragmentation, and cleaved caspase-9 accumulation. These findings suggest a therapeutic value for MG in cardioprotection

    What Can Modeling Tell Us About Sustainable End Points for Neglected Tropical Diseases?

    Get PDF
    As programs move closer toward the World Health Organization (WHO) goals of reduction in morbidity, elimination as a public health problem or elimination of transmission, countries will be faced with planning the next stages of surveillance and control in low prevalence settings. Mathematical models of neglected tropical diseases (NTDs) will need to go beyond predicting the effect of different treatment programs on these goals and on to predicting whether the gains can be sustained. One of the most important challenges will be identifying the policy goal and the right constraints on interventions and surveillance over the long term, as a single policy option will not achieve all aims-for example, minimizing morbidity and minimizing costs cannot both be achieved. As NTDs move toward 2030 and beyond, more nuanced intervention choices will be informed by quantitative analyses which are adapted to national context

    The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors

    Get PDF
    While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development

    High-Resolution Modeling of the Dust and Water Cycles with the NASA Ames Mars Global Climate Model

    Get PDF
    NASAs Mars Climate Modeling Center at Ames Research Center is currently undergoing an exciting period of growth in personnel, modeling capabilities, and science productivity. We are transitioning from our legacy Arakawa C-grid finite-difference dynamical core to the NOAA/GFDL cubed-sphere finite-volume dynamical core for simulating the climate of Mars in a global framework. This highly parallelized core is scalable and flexible, which allows for significant improvements in the horizontal and vertical resolutions of our simulations. We have implemented the Ames water ice cloud microphysics package described in Haberle et al. (2018) into this new dynamical core. We will present high-resolution simulations of the dust and water cycles that show that sub-degree horizontal resolution improves the agreement between the vertical distribution of dust and water ice and observations. In particular, both water ice clouds and dust are transported to higher altitudes due to stronger topographic circulations at high resolution. Preliminary results suggest that high-resolution global modeling is needed to properly capture critical features of the dust and water cycles, and thus the current Mars climate

    Intraspecific Inversions Pose a Challenge for the trnH-psbA Plant DNA Barcode

    Get PDF
    BACKGROUND: The chloroplast trnH-psbA spacer region has been proposed as a prime candidate for use in DNA barcoding of plants because of its high substitution rate. However, frequent inversions associated with palindromic sequences within this region have been found in multiple lineages of Angiosperms and may complicate its use as a barcode, especially if they occur within species. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluate the implications of intraspecific inversions in the trnH-psbA region for DNA barcoding efforts. We report polymorphic inversions within six species of Gentianaceae, all narrowly circumscribed morphologically: Gentiana algida, Gentiana fremontii, Gentianopsis crinita, Gentianopsis thermalis, Gentianopsis macrantha and Frasera speciosa. We analyze these sequences together with those from 15 other species of Gentianaceae and show that typical simple methods of sequence alignment can lead to misassignment of conspecifics and incorrect assessment of relationships. CONCLUSIONS/SIGNIFICANCE: Frequent inversions in the trnH-psbA region, if not recognized and aligned appropriately, may lead to large overestimates of the number of substitution events separating closely related lineages and to uniting more distantly related taxa that share the same form of the inversion. Thus, alignment of the trnH-psbA spacer region will need careful attention if it is used as a marker for DNA barcoding
    • …
    corecore