14 research outputs found

    Effect of Larval Nutrition on Maternal mRNA Contribution to the Drosophila Egg.

    Get PDF
    Embryonic development begins under the control of maternal gene products, mRNAs and proteins that the mother deposits into the egg; the zygotic genome is activated some time later. Maternal control of early development is conserved across metazoans. Gene products contributed by mothers are critical to many early developmental processes, and set up trajectories for the rest of development. Maternal deposition of these factors is an often-overlooked aspect of parental investment. If the mother experiences challenging environmental conditions, such as poor nutrition, previous studies in Drosophila melanogaster have demonstrated a plastic response wherein these mothers may produce larger eggs to buffer the offspring against the same difficult environment. This additional investment can produce offspring that are more fit in the challenging environment. With this study, we ask whether D. melanogaster mothers who experience poor nutrition during their own development change their gene product contribution to the egg. We perform mRNA-Seq on eggs at a stage where all mRNAs are maternally derived, from mothers with different degrees of nutritional limitation. We find that nutritional limitation produces similar transcript changes at all degrees of limitation tested. Genes that have lower transcript abundance in nutritionally limited mothers are those involved in translation, which is likely one of the most energetically costly processes occurring in the early embryo. We find an increase in transcripts for transport and localization of macromolecules, and for the electron transport chain. The eggs produced by nutrition-limited mothers show a plastic response in mRNA deposition, which may better prepare the future embryo for development in a nutrition-limited environment

    Congenital Cardiac Outflow Tract Abnormalities in Dogs: Prevalence and Pattern of Inheritance From 2008 to 2017

    Get PDF
    Subvalvular aortic stenosis (SAS) and valvular pulmonic stenosis (PS) are two of the most common congenital heart diseases of dogs. The aim of this study was to determine the prevalence and mode of inheritance of these congenital heart diseases in a large veterinary teaching hospital population. Case records of dogs presented to the University of California Davis, Veterinary Medical Teaching Hospital (UCD VMTH) between January 2008 to December 2017 were reviewed retrospectively and pedigree information was obtained when available. There were 259 unique SAS and 336 unique PS cases diagnosed during the study period. The prevalence of SAS was 0.3% of overall hospital admissions and 4.7% for all dogs seen by the cardiology service. The prevalence for PS was 0.41% of overall hospital admissions and 6.1% of dogs seen by the cardiology service. Bullmastiffs and Newfoundlands had the greatest prevalence (6.59 and 4.46%, respectively) and odds ratio (52.43 and 34.73, respectively) for SAS. Bulldogs and French Bulldogs had the greatest prevalence (4.8 and 2.7%, respectively) and odds ratio (13.32 and 7.52, respectively) for PS. The identified prevalence of SAS and PS is higher than previously reported. Pedigree analysis in SAS affected Bullmastiffs, Golden Retrievers, and Rottweilers suggested an autosomal recessive pattern of inheritance. The mode of inheritance for PS in Bulldogs, also appears to be autosomal recessive. The results of this study can be used to inform future selection of breeding pairs and genetic studies aimed at reducing the prevalence of these common congenital heart diseases

    ​ Supplemental Material for Crofton et al., 2018

    No full text
    <p>Figure S1 is a plot from PCA analysis on the differentially expressed genes. Figure S2 is a plot of the effect of maternal nutrition at the larval stage on fecundity.</p> <p>Table S1 contains the transcript abundance counts from mRNA-Seq on eggs from mothers with differential nutrition during larval development. Table S2 has abundance counts on the gene level. Table S3 is a list of transcripts with significantly different abundances between nutrition treatments. Table S4 is a list of genes with significantly different abundances between nutrition treatments. Table S5 contains the results from GO category analysis of genes with different transcript abundance from eggs from mothers with standard and limited nutrition during development. Table S6 has results from significantly enriched KEGG pathways. Table S7 lists correlation coefficients of transcript abundance between all samples at both the transcript and gene level. Table S8 compares our RNA-Seq data from eggs from nutritionally limited mothers to gene lists from other studies of relevant phenotypes. Table S9 is the data collected on fecundity in mothers with standard and limited nutrition in development.</p

    Development of plasma and whole blood taurine reference ranges and identification of dietary features associated with taurine deficiency and dilated cardiomyopathy in golden retrievers: A prospective, observational study.

    No full text
    INTRODUCTION:A surge in Food and Drug Administration (FDA) consumer complaints identified concerns that legume-rich, grain-free diets were associated with nutritionally-mediated dilated cardiomyopathy (DCM). Golden retrievers represent the most reported breed affected by this condition and previous studies documented the disease is responsive to dietary change and taurine supplementation. Although dietary findings across cases are compelling, prospective studies with control groups are lacking. The role of diet in developing taurine deficiency and echocardiographic changes consistent with DCM in healthy dogs is unknown. OBJECTIVES:We hypothesized that golden retrievers eating non-traditional diets are at a higher risk of having taurine deficiency and nutritionally-mediated DCM compared with those eating traditional commercial diets. We aimed to compare taurine concentrations and echocardiographic indices of systolic function between golden retrievers in each diet group and elucidate associations between diet and these variables. Additionally, we aimed to generate breed-specific reference intervals for whole blood and plasma taurine concentrations. ANIMALS:86 golden retrievers. METHODS:Golden retrievers eating traditional or non-traditional diets were evaluated and diet history, taurine concentrations and echocardiographic data were collected. Dietary features, taurine concentrations and echocardiographic findings were compared between diet groups. Relative risks were calculated for the likelihood of echocardiographic abnormalities and taurine deficiency in each diet group. Breed-specific reference intervals were constructed for taurine concentrations in dogs from the traditional diet group. RESULTS:Golden retrievers eating non-traditional diets had significantly lower taurine concentrations and more frequent systolic dysfunction. Breed specific reference intervals are higher than previously reported across breeds. CONCLUSIONS:Non-traditional diets, which were typically grain-free and contained legumes in this study, were significantly associated with and have increased relative risk for the identification of taurine deficiency and echocardiographic abnormalities consistent with nutritionally-mediated DCM. These findings were identifiable in the absence of clinical signs and support the findings of multiple previous studies and the ongoing FDA investigation
    corecore