7 research outputs found

    Plant-Derived Smoke Affects Biochemical Mechanism on Plant Growth and Seed Germination

    No full text
    The role of plant-derived smoke, which is changed in mineral-nutrient status, in enhancing germination and post-germination was effectively established. The majority of plant species positively respond to plant-derived smoke in the enhancement of seed germination and plant growth. The stimulatory effect of plant-derived smoke on normally growing and stressed plants may help to reduce economic and human resources, which validates its candidature as a biostimulant. Plant-derived smoke potentially facilitates the early harvest and increases crop productivity. Karrikins and cyanohydrin are the active compound in plant-derived smoke. In this review, data from the latest research explaining the effect of plant-derived smoke on morphological, physiological, biochemical, and molecular responses of plants are presented. The pathway for reception and interaction of compounds of plant-derived smoke at the cellular and molecular level of plant is described and discussed

    Plant-Derived Smoke Ameliorates Salt Stress in Wheat by Enhancing Expressions of Stress-Responsive Genes and Antioxidant Enzymatic Activity

    No full text
    Abiotic stresses are the biggest threat to the increasing population worldwide. Salt stress is one of the most significant abiotic stresses, affecting 20% of the crop production around the world. Plant-derived smoke (PDS) has been reported as a biologically active plant product in stimulating seed germination, seedling growth and physiological characteristics of crops under abiotic stress conditions. Nevertheless, studies showing how PDS alleviates salt stress are largely unknown. Here, we report the molecular mechanism of how PDS could alleviate salt stress in wheat. Initially, PDS at 2000 ppm enhanced seed germination, root/shoot length and seedling fresh weight. However, PDS at 1000 and 500 ppm did not show any significant effect. Salt stress at 150 and 200 mM significantly reduced seed germination rate, root/shoot length and fresh weight of the wheat seedlings. Interestingly, PDS supplementation at 2000 ppm concentration was sufficient to restore seed germination under salt stress condition. Moreover, PDS improved root/shoot length and seedling biomass under 150 and 200 mM salt stress, suggesting that PDS is a potent plant product, capable of abiotic stress alleviation in crops. In comparison to the control, PDS-treated seedlings displayed increased activity of major antioxidative enzymes such as superoxide dismutase, peroxidase and ascorbate peroxidase under salt stress, resulting in reduced levels of hydrogen peroxide and lipid peroxidase, showing that PDS can possibly help in salt stress amelioration by regulating redox homeostasis. Importantly, salt stress altered the expression of germination marker genes, such as TaSAM, TaPHY, TaBGU (germination positive effectors), TaLEA and TaGARS34 (germination negative effectors), suggesting the potential role of PDS in the germination pathway under salt stress. Further, PDS modulated the transcript levels of several salt stress stress-responsive genes, including TaSOS4, TaBADH and TaHKT2. In conclusion, this study provides a molecular and physiological basis for elucidating the mechanism of how PDS functions in stress induction in wheat, as well as demonstrates the importance of PDS in agricultural practices, laying the groundwork for future research into the role of PDS in the amelioration of abiotic stresses in various plants

    Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution

    Get PDF
    Plant-derived smoke has effects on plant growth. To find the molecular mechanism of plant-derived smoke on maize, a gel-free/label-free proteomic technique was used. The length of root and shoot were increased in maize by plant-derived smoke. Proteomic analysis revealed that 2000 ppm plant-derived smoke changed the abundance of 69 proteins in 4-days old maize shoot. Proteins in cytoplasm, chloroplast, and cell membrane were altered by plant-derived smoke. Catalytic, signaling, and nucleotide binding proteins were changed. Proteins related to sucrose synthase, nucleotides, signaling, and glutathione were significantly increased; however, cell wall, lipids, photosynthetic, and amino acid degradations related proteins were decreased. Based on proteomic and immunoblot analyses, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) was decreased; however, RuBisCO activase was not changed by plant-derived smoke in maize shoot. Ascorbate peroxidase was not affected; however, peroxiredoxin was decreased by plant-derived smoke. Furthermore, the results from enzyme-activity and mRNA-expression analyses confirmed regulation of ascorbate peroxidase and the peroxiredoxinin reactive oxygen scavenging system. These results suggest that increases in sucrose synthase, nucleotides, signaling, and glutathione related proteins combined with regulation of reactive oxygen species and their scavenging system in response to plant-derived smoke may improve maize growth

    Plant-Derived Smoke Ameliorates Salt Stress in Wheat by Enhancing Expressions of Stress-Responsive Genes and Antioxidant Enzymatic Activity

    No full text
    Abiotic stresses are the biggest threat to the increasing population worldwide. Salt stress is one of the most significant abiotic stresses, affecting 20% of the crop production around the world. Plant-derived smoke (PDS) has been reported as a biologically active plant product in stimulating seed germination, seedling growth and physiological characteristics of crops under abiotic stress conditions. Nevertheless, studies showing how PDS alleviates salt stress are largely unknown. Here, we report the molecular mechanism of how PDS could alleviate salt stress in wheat. Initially, PDS at 2000 ppm enhanced seed germination, root/shoot length and seedling fresh weight. However, PDS at 1000 and 500 ppm did not show any significant effect. Salt stress at 150 and 200 mM significantly reduced seed germination rate, root/shoot length and fresh weight of the wheat seedlings. Interestingly, PDS supplementation at 2000 ppm concentration was sufficient to restore seed germination under salt stress condition. Moreover, PDS improved root/shoot length and seedling biomass under 150 and 200 mM salt stress, suggesting that PDS is a potent plant product, capable of abiotic stress alleviation in crops. In comparison to the control, PDS-treated seedlings displayed increased activity of major antioxidative enzymes such as superoxide dismutase, peroxidase and ascorbate peroxidase under salt stress, resulting in reduced levels of hydrogen peroxide and lipid peroxidase, showing that PDS can possibly help in salt stress amelioration by regulating redox homeostasis. Importantly, salt stress altered the expression of germination marker genes, such as TaSAM, TaPHY, TaBGU (germination positive effectors), TaLEA and TaGARS34 (germination negative effectors), suggesting the potential role of PDS in the germination pathway under salt stress. Further, PDS modulated the transcript levels of several salt stress stress-responsive genes, including TaSOS4, TaBADH and TaHKT2. In conclusion, this study provides a molecular and physiological basis for elucidating the mechanism of how PDS functions in stress induction in wheat, as well as demonstrates the importance of PDS in agricultural practices, laying the groundwork for future research into the role of PDS in the amelioration of abiotic stresses in various plants
    corecore