5 research outputs found

    On Distribution Functions for Partons in Nuclei

    Full text link
    We suggest that a previously conjectured relation between Structure Functions (SF) for nuclei and nucleons also links distribution functions (df) for partons in a nucleus and in nucleons. The above suggestion ensures in principle identical results for SF F2AF_2^A, whether computed with hadronic or partonic degrees of freedom. In practice there are differences, due to different F2nF_2^n input. We show that the thus defined nuclear parton distribution functions (pdf) respect standard sumrules. In addition we numerically compare some moments of nuclear SF, and find agreement between results, using hadronic and partonic descriptions. We present computations of EMC ratios for both, and compare those with hadronic predictions and data. In spite of substantial differences in the participating SF, the two representations produce approximately the same EMC ratios. The apparent correlation between the above deviations is ascribed to a sumrule for F2AF_2^A. We conclude with a discussion of alternative approaches to nuclear pdf.Comment: 14 pages, 4 figure

    Description of inclusive scattering of 4.045 GeV electrons from D

    Get PDF
    We exploit a relationship between the Structure Functions of nucleons, the physical deuteron and of a deuteron, composed of point-nucleons to compute angular distributions of inclusive cross sections of 4.05 GeV electrons. We report general agreement with data and interpret the remaining discrepancies. We discuss the potential of the data for information on neutron structure functions Fkn(x,Q2)F_k^n(x,Q^2) and the static form factor GMn(Q2)G_M^n(Q^2).Comment: 9 pages,1 Fig., PS fil

    Theoretical aspects of the CEBAF 89-009 experiment on inclusive scattering of 4.05 GeV electrons from nuclei

    Get PDF
    We compare recent CEBAF data on inclusive electron scattering on nuclei with predictions, based on a relation between structure functions (SF) of a nucleus, a nucleon and a nucleus of point-nucleons. The latter contains nuclear dynamics, e.g. binary collision contributions in addition to the asymptotic limit. The agreement with the data is good, except in low-intensity regions. Computed ternary collsion contributions appear too small for an explanation. We perform scaling analyses in Gurvitz's scaling variable and found that for yG≷0y_G\gtrless 0, ratios of scaling functions for pairs of nuclei differ by less than 15-20% from 1. Scaling functions for 00 are, for increasing Q2Q^2, shown to approach a plateau from above. We observe only weak Q2Q^2-dependence in FSI, which in the relevant kinematic region is ascribed to the diffractive nature of the NN amplitudes appearing in FSI. This renders it difficult to separate asymptotic from FSI parts and seriously hampers the extraction of n(p)n(p) from scaling analyses in a model-independnent fashion.Comment: 11 p. Latex file, 2 ps fig

    GRS computation of deep inelastic electron scattering on 4He

    Get PDF
    We compute cross sections for inclusive scattering of high energy electrons on 4He, based on the two lowest orders of the Gersch-Rodriguez-Smith (GRS) series. The required one- and two-particle density matrices are obtained from non-relativistic 4He wave functions using realistic models for the nucleon-nucleon and three-nucleon interaction. Predictions for E=3.6 GeV agree well with the NE3 SLAC-Virginia data.Comment: 18 pages, 7 figures, submitted to PR

    Inclusive scattering data on light nuclei as a precision tool for the extraction of G_M^n

    Full text link
    We demonstrate that refinements in the analysis of inclusive scattering data on light nuclei enable the extraction of, generally accurate, values of the neutron magnetic form factor G_M^n(Q^2). In particular, a recent parametrization of ep inclusive resonance excitation enables a reliable calculation of the inelastic background, and as a consequence a separation of quasi-elastic and inelastic contributions. A far larger number of data points than previously considered is now available for analysis and enables a more reliable extraction of G_M^n from cross section and R_T data on D and He. The achieved accuracy appears mainly limited by the present uncertainties in the knowledge of proton form factors and by the accuracy of the data.Comment: new version with minor changes in the text and figures, added references and 5 figure
    corecore