11 research outputs found

    High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of cryptosporidiosis in HIV infected children has proved difficult and unsatisfactory with no drugs having demonstrable efficacy in controlled trials except nitazoxanide. We hypothesised that a prolonged course of treatment with high dose nitazoxanide would be effective in treating cryptosporidiosis in HIV positive Zambian children.</p> <p>Methods</p> <p>We performed a double-blind, randomised, placebo controlled trial in paediatric patients in the UTH in Lusaka. The study included HIV positive children between one and eleven years of age if 2 out of 3 stool samples were positive for oocysts of <it>Cryptosporidium </it>spp. Children were given nitazoxanide suspension in a dose of 200 mg twice daily (bid) for 28 days (if 1-3 years old) or 400 mg bid for 28 days (if 4-11 years old), or matching placebo.</p> <p>Results</p> <p>Sixty children were randomised and 52 were fully evaluated. Only five children were 4 years of age or over and received the higher dose. In the primary efficacy analysis, 11 out of 26 (42%) in the active treatment group achieved a 'Well' clinical response compared to 8 out of 26 (35%) in the placebo group. Parasitological response was declared as 'Eradicated' in 27% in the active group and 35% in the placebo group. Mortality (16/52, 31%) did not differ by treatment allocation.</p> <p>Conclusion</p> <p>We found no significant benefit in children with cryptosporidiosis despite high dose and longer treatment duration. This is the second randomised controlled trial to suggest that in Zambian children with HIV-related immunosuppression nitazoxanide does not eradicate this infection nor provide clinical symptom reduction.</p> <p>Trial Registration</p> <p>The trial was registered as ISRCTN41089957.</p

    Transcriptomic analysis of enteropathy in Zambian children with severe acute malnutrition.

    Get PDF
    BACKGROUND: Children with severe acute malnutrition (SAM), with or without diarrhoea, often have enteropathy, but there are few molecular data to guide development of new therapies. We set out to determine whether SAM enteropathy is characterised by specific transcriptional changes which might improve understanding or help identify new treatments. METHODS: We collected intestinal biopsies from children with SAM and persistent diarrhoea. mRNA was extracted from biopsies, sequenced, and subjected to a progressive set of complementary analytical approaches: NOIseq, Gene Set Enrichment Analysis (GSEA), and correlation analysis of phenotypic data with gene expression. FINDINGS: Transcriptomic profiles were generated for biopsy sets from 27 children of both sexes, under 2 years of age, of whom one-third were HIV-infected. NOIseq analysis, constructed from phenotypic group extremes, revealed 66 differentially expressed genes (DEGs) out of 21,386 mapped to the reference genome. These DEGs include genes for mucins and mucus integrity, antimicrobial defence, nutrient absorption, C-X-C chemokines, proteases and anti-proteases. Phenotype - expression correlation analysis identified 1221 genes related to villus height, including increased cell cycling gene expression in more severe enteropathy. Amino acid transporters and ZIP zinc transporters were specifically increased in severe enteropathy, but transcripts for xenobiotic metabolising enzymes were reduced. INTERPRETATION: Transcriptomic analysis of this rare collection of intestinal biopsies identified multiple novel elements of pathology, including specific alterations in nutrient transporters. Changes in xenobiotic metabolism in the gut may alter drug disposition. Both NOIseq and GSEA identified gene clusters similar to those differentially expressed in pediatric Crohn's disease but to a much lesser degree than those identified in coeliac disease. FUND: Bill & Melinda Gates Foundation OPP1066118. The funding agency had no role in study design, data collection, data analysis, interpretation, or writing of the report

    Towards screening Barrett’s Oesophagus: current guidelines, imaging modalities and future developments

    Get PDF
    Barrett’s oesophagus is the only known precursor to oesophageal adenocarcinoma (OAC). Although guidelines on the screening and surveillance exist in Barrett’s oesophagus, the current strategies are inadequate. Oesophagogastroduodenoscopy (OGD) is the gold standard method in screening for Barrett’s oesophagus. This invasive method is expensive with associated risks negating its use as a current screening tool for Barrett’s oesophagus. This review explores current definitions, epidemiology, biomarkers, surveillance, and screening in Barrett’s oesophagus. Imaging modalities applicable to this condition are discussed, in addition to future developments. There is an urgent need for an alternative non-invasive method of screening and/or surveillance which could be highly beneficial towards reducing waiting times, alleviating patient fears and reducing future costs in current healthcare services. Vibrational spectroscopy has been shown to be promising in categorising Barrett’s oesophagus through to high-grade dysplasia (HGD) and OAC. These techniques need further validation through multicentre trials

    Organization and chemical neuroanatomy of the African elephant (Loxodonta africana) hippocampus

    No full text
    Elephants are thought to possess excellent long-term spatial–temporal and social memory, both memory types being at least in part hippocampus dependent. Although the hippocampus has been extensively studied in common laboratory mammalian species and humans, much less is known about comparative hippocampal neuroanatomy, and specifically that of the elephant. Moreover, the data available regarding hippocampal size of the elephant are inconsistent. The aim of the current study was to re-examine hippocampal size and provide a detailed neuroanatomical description of the hippocampus in the African elephant. In order to examine the hippocampal size the perfusion-fixed brains of three wild-caught adult male African elephants, aged 20–30 years, underwent MRI scanning. For the neuroanatomical description brain sections containing the hippocampus were stained for Nissl, myelin, calbindin, calretinin, parvalbumin and doublecortin. This study demonstrates that the elephant hippocampus is not unduly enlarged, nor specifically unusual in its internal morphology. The elephant hippocampus has a volume of 10.84 ± 0.33 cm³ and is slightly larger than the human hippocampus (10.23 cm3). Histological analysis revealed the typical trilaminated architecture of the dentate gyrus (DG) and the cornu ammonis (CA), although the molecular layer of the dentate gyrus appears to have supernumerary sublaminae compared to other mammals. The three main architectonic fields of the cornu ammonis (CA1, CA2, and CA3) could be clearly distinguished. Doublecortin immunostaining revealed the presence of adult neurogenesis in the elephant hippocampus. Thus, the elephant exhibits, for the most part, what might be considered a typically mammalian hippocampus in terms of both size and architectur
    corecore