134 research outputs found

    Exome-wide association study of pancreatic cancer risk

    Get PDF
    We conducted a case-control exome-wide association study to discover germline variants in coding regions that affect risk for pancreatic cancer, combining data from 5 studies. We analyzed exome and genome sequencing data from 437 patients with pancreatic cancer (cases) and 1922 individuals not known to have cancer (controls). In the primary analysis, BRCA2 had the strongest enrichment for rare inactivating variants (17/437 cases vs 3/1922 controls) (P=3.27x10(-6); exome-wide statistical significance threshold P<2.5x10(-6)). Cases had more rare inactivating variants in DNA repair genes than controls, even after excluding 13 genes known to predispose to pancreatic cancer (adjusted odds ratio, 1.35, P=.045). At the suggestive threshold (P<.001), 6 genes were enriched for rare damaging variants (UHMK1, AP1G2, DNTA, CHST6, FGFR3, and EPHA1) and 7 genes had associations with pancreatic cancer risk, based on the sequence-kernel association test. We confirmed variants in BRCA2 as the most common high-penetrant genetic factor associated with pancreatic cancer and we also identified candidate pancreatic cancer genes. Large collaborations and novel approaches are needed to overcome the genetic heterogeneity of pancreatic cancer predisposition

    In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment.

    Get PDF
    Angiogenesis is regulated by complex interactions between endothelial cells and support cells of the vascular microenvironment, such as tissue myeloid cells and vascular mural cells. Multicellular interactions during angiogenesis are difficult to study in animals and challenging in a reductive setting. We incorporated stromal cells into an established bead-based capillary sprouting assay to develop assays that faithfully reproduce major steps of vessel sprouting and maturation. We observed that macrophages enhance angiogenesis, increasing the number and length of endothelial sprouts, a property we have dubbed "angiotrophism." We found that polarizing macrophages toward a pro-inflammatory profile further increased their angiotrophic stimulation of vessel sprouting, and this increase was dependent on macrophage Notch signaling. To study endothelial/pericyte interactions, we added vascular pericytes directly to the bead-bound endothelial monolayer. These pericytes formed close associations with the endothelial sprouts, causing increased sprout number and vessel caliber. We found that Jagged1 expression and Notch signaling are essential for the growth of both endothelial cells and pericytes and may function in their interaction. We observed that combining endothelial cells with both macrophages and pericytes in the same sprouting assay has multiplicative effects on sprouting. These results significantly improve bead-capillary sprouting assays and provide an enhanced method for modeling interactions between the endothelium and the vascular microenvironment. Achieving this in a reductive in vitro setting represents a significant step toward a better understanding of the cellular elements that contribute to the formation of mature vasculature.S

    Wild flies hedge their thermal preference bets in response to seasonal fluctuations

    Get PDF
    Fluctuating environmental pressures can challenge organisms by repeatedly shifting the optimum phenotype. Two contrasting evolutionary strategies to cope with these fluctuations are 1) evolution of the mean phenotype to follow the optimum (adaptive tracking) or 2) diversifying phenotypes so that at least some individuals have high fitness in the current fluctuation (bet-hedging). Bet-hedging could underlie stable differences in the behavior of individuals that are present even when genotype and environment are held constant. Instead of being simply ‘noise,’ behavioral variation across individuals may reflect an evolutionary strategy of phenotype diversification. Using geographically diverse wild-derived fly strains and high-throughput assays of individual preference, we tested whether thermal preference variation in Drosophila melanogaster could reflect a bet-hedging strategy. We also looked for evidence that populations from different regions differentially adopt bet-hedging or adaptive-tracking strategies. Computational modeling predicted regional differences in the relative advantage of bet-hedging, and we found patterns consistent with that in regional variation in thermal preference heritability. In addition, we found that temporal patterns in mean preference support bet-hedging predictions and that there is a genetic basis for thermal preference variability. Our empirical results point to bet-hedging in thermal preference as a potentially important evolutionary strategy in wild populations

    Wild flies hedge their thermal preference bets in response to seasonal fluctuations

    Get PDF
    Fluctuating environmental pressures can challenge organisms by repeatedly shifting the optimum phenotype. Two contrasting evolutionary strategies to cope with these fluctuations are 1) evolution of the mean phenotype to follow the optimum (adaptive tracking) or 2) diversifying phenotypes so that at least some individuals have high fitness in the current fluctuation (bet-hedging). Bet-hedging could underlie stable differences in the behavior of individuals that are present even when genotype and environment are held constant. Instead of being simply ‘noise,’ behavioral variation across individuals may reflect an evolutionary strategy of phenotype diversification. Using geographically diverse wild-derived fly strains and high-throughput assays of individual preference, we tested whether thermal preference variation in Drosophila melanogaster could reflect a bet-hedging strategy. We also looked for evidence that populations from different regions differentially adopt bet-hedging or adaptive-tracking strategies. Computational modeling predicted regional differences in the relative advantage of bet-hedging, and we found patterns consistent with that in regional variation in thermal preference heritability. In addition, we found that temporal patterns in mean preference support bet-hedging predictions and that there is a genetic basis for thermal preference variability. Our empirical results point to bet-hedging in thermal preference as a potentially important evolutionary strategy in wild populations

    Documenting ---- in Bloomington-Normal: A Community Report on Intolerance, Segregation, Accessibility, Inclusion, and Progress, and Improvement

    Get PDF
    For the local chapter of Not In Our Town, we document intolerance, discrimination, segregation, disparities of access, and disparities in the criminal justice system in Bloomington-Normal, IL. Using archival material, secondary data, and primary data, we examine these issues from the mid-1990s to the present. We also assess the position of the organization in the community and provide strategies for future success. In sum, Bloomington-Normal was and is intolerant; discrimination did and does take place in this community; there are disparities of access and in the criminal justice system; we are segregated. The community is also less of these things than it used to be and is less of these things than other places. Fifteen undergraduate students in Sociology 300, twelve graduate students in Sociology 477, a teaching assistant, and an instructor conducted this study in spring 2017

    Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials

    Get PDF
    The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based endpoint selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy and related disorders, to compare candidate clinical trial endpoints. In this multicentre United Kingdom study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and magnetic resonance imaging assessments at baseline, six and twelve-months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, progressive supranuclear palsy-subcortical (progressive supranuclear palsy-parkinsonism and progressive gait freezing subtypes), progressive supranuclear palsy-cortical (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech-and-language, and progressive supranuclear palsy-corticobasal syndrome subtypes), multiple system atrophy-parkinsonism, multiple system atrophy-cerebellar, corticobasal syndrome with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling, and sample sizes for clinical trials of disease modifying agents, according to group and assessment type. Two hundred forty-three people were recruited (117 progressive supranuclear palsy, 68 corticobasal syndrome, 42 multiple system atrophy and 16 indeterminate; 138 [56.8%] male; age at recruitment 68.7 ± 8.61 years). One hundred fifty-nine completed six-month assessment (82 progressive supranuclear palsy, 27 corticobasal syndrome, 40 multiple system atrophy and 10 indeterminate) and 153 completed twelve-month assessment (80 progressive supranuclear palsy, 29 corticobasal syndrome, 35 multiple system atrophy and 9 indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for one-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease specific. In conclusion, phenotypic variance within progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial endpoints, from potential functional, cognitive, clinical or neuroimaging measures of disease progression

    Direct measurement of local oxygen concentration in the bone marrow of live animals

    Get PDF
    Characterizing how the microenvironment, or niche, regulates stem cell activity is central to understanding stem cell biology and to developing strategies for therapeutic manipulation of stem cells1. Low oxygen tension (hypoxia) is commonly thought to be a shared niche characteristic in maintaining quiescence in multiple stem cell types2–4. However, support for the existence of a hypoxic niche has largely come from indirect evidence such as proteomic analysis5, expression of HIF-1 and related genes6, and staining with surrogate hypoxic markers (e.g. pimonidazole)6–8. Here we perform direct in vivo measurements of local oxygen tension (pO2) in the bone marrow (BM) of live mice. Using two-photon phosphorescence lifetime microscopy (2PLM), we determined the absolute pO2 of the BM to be quite low (<32 mmHg) despite very high vascular density. We further uncovered heterogeneities in local pO2, with the lowest pO2 (~9.9 mmHg, or 1.3%) found in deeper peri-sinusoidal regions. The endosteal region, by contrast, is less hypoxic as it is perfused with small arteries that are often positive for the marker nestin. These pO2 values change dramatically after radiation and chemotherapy, pointing to the role of stress in altering the stem cell metabolic microenvironment

    Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome

    Get PDF
    IMPORTANCE: Patients with atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson’s disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes, but have not been prospectively studied. OBJECTIVE: To define the distinguishing features of PSP and CBS, and to assess their usefulness in facilitating early diagnosis and separation from PD. DESIGN, SETTING, PARTICIPANTS: Cohort study which recruited APS and PD patients from movement disorder clinics across the UK from September 2015 to December 2018, and will follow up patients over 5 years. APS patients were stratified into PSP-Richardson syndrome, PSP-subcortical (including PSP-parkinsonism and PSP-progressive gait freezing cases), PSP-cortical (including PSP-frontal and PSP/CBS overlap cases), MSA-parkinsonism, MSA-cerebellar, CBS-Alzheimer’s and CBS-non-Alzheimer’s groups. MAIN OUTCOME MEASURES: Baseline group comparisons were conducted using: 1) Clinical trajectory; 2) Cognitive screening scales; 3) Serum neurofilament light chain (NF-L); 4) TRIM11, ApoE and MAPT genotypes; 5) Volumetric MRI. RESULTS: 222 APS cases (101 PSP, 55 MSA, 40 CBS and 26 indeterminate) were recruited (58% male; mean age at recruitment, 68.3 years). Age-matched controls (n=76) and PD cases (n=1967) were also included. Concordance between the ante-mortem clinical diagnosis and pathological diagnosis was achieved in 12/13 (92%) of PSP and CBS cases coming to post-mortem. Applying the MDS PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP. 49/101 (49%) of reclassified PSP patients did not have classical PSP-Richardson syndrome. PSP-subcortical patients had a longer diagnostic latency and a more benign clinical trajectory than PSP-Richardson syndrome and PSP-cortical (p<0.05). PSP-subcortical was distinguished from PSP-cortical and PSP-Richardson syndrome by cortical volumetric MRI measures (AUC 0.84-0.89), cognitive profile (AUC 0.80-0.83), serum NF-L (AUC 0.75-0.83) and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP subtypes. 8/17 (47%) of CBS patients with CSF analysis were identified as having CBS-Alzheimer’s. CBS-Alzheimer’s patients had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment and higher APOE-ε4 allele frequency than CBS-non-Alzheimer’s (p<0.05, AUC 0.80-0.87). Serum NF-L levels distinguished PD from PSP and CBS (p<0.05, AUC 0.80). CONCLUSIONS AND RELEVANCE: Clinical, therapeutic and epidemiological studies focusing on PSP-Richardson syndrome are likely to miss a large number of patients with underlying PSP-tau pathology. CSF analysis defines a distinct CBS-Alzheimer’s subgroup. PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis
    • …
    corecore