12 research outputs found

    Styrene-Associated Health Outcomes at a Windblade Manufacturing Plant

    Get PDF
    Background: Health risks of using styrene to manufacture windblades for the green energy sector are unknown. Methods: Using data collected from 355 (73%) current windblade workers and regression analysis, we investigated associations between health outcomes and styrene exposure estimates derived from urinary styrene metabolites. Results: The median current styrene exposure was 53.6 mg/g creatinine (interquartile range: 19.5–94.4). Color blindness in men and women (standardized morbidity ratios 2.3 and 16.6, respectively) was not associated with exposure estimates, but was the type previously reported with styrene. Visual contrast sensitivity decreased and chest tightness increased (odds ratio 2.9) with increasing current exposure. Decreases in spirometric parameters and FeNO, and increases in the odds of wheeze and asthma-like symptoms (odds ratios 1.3 and 1.2, respectively) occurred with increasing cumulative exposure. Conclusions: Despite styrene exposures below the recommended 400 mg/g creatinine, visual and respiratory effects indicate the need for additional preventative measures in this industry

    Styrene-Associated Health Outcomes at a Windblade Manufacturing Plant

    Get PDF
    Background: Health risks of using styrene to manufacture windblades for the green energy sector are unknown. Methods: Using data collected from 355 (73%) current windblade workers and regression analysis, we investigated associations between health outcomes and styrene exposure estimates derived from urinary styrene metabolites. Results: The median current styrene exposure was 53.6 mg/g creatinine (interquartile range: 19.5–94.4). Color blindness in men and women (standardized morbidity ratios 2.3 and 16.6, respectively) was not associated with exposure estimates, but was the type previously reported with styrene. Visual contrast sensitivity decreased and chest tightness increased (odds ratio 2.9) with increasing current exposure. Decreases in spirometric parameters and FeNO, and increases in the odds of wheeze and asthma-like symptoms (odds ratios 1.3 and 1.2, respectively) occurred with increasing cumulative exposure. Conclusions: Despite styrene exposures below the recommended 400 mg/g creatinine, visual and respiratory effects indicate the need for additional preventative measures in this industry

    Nicotine, Carcinogen, and Toxin Exposure in Long-Term E-Cigarette and Nicotine Replacement Therapy Users:A Cross-sectional Study

    Get PDF
    BACKGROUND: Given the rapid increase in the popularity of e-cigarettes and the paucity of associated longitudinal health-related data, the need to assess the potential risks of long-term use is essential. OBJECTIVE: To compare exposure to nicotine, tobacco-related carcinogens, and toxins among smokers of combustible cigarettes only, former smokers with long-term e-cigarette use only, former smokers with long-term nicotine replacement therapy (NRT) use only, long-term dual users of both combustible cigarettes and e-cigarettes, and long-term users of both combustible cigarettes and NRT. DESIGN: Cross-sectional study. SETTING: United Kingdom. PARTICIPANTS: The following 5 groups were purposively recruited: combustible cigarette-only users, former smokers with long-term (≥6 months) e-cigarette-only or NRT-only use, and long-term dual combustible cigarette-e-cigarette or combustible cigarette-NRT users (n = 36 to 37 per group; total n = 181). MEASUREMENTS: Sociodemographic and smoking characteristics were assessed. Participants provided urine and saliva samples and were analyzed for biomarkers of nicotine, tobacco-specific N-nitrosamines (TSNAs), and volatile organic compounds (VOCs). RESULTS: After confounders were controlled for, no clear between-group differences in salivary or urinary biomarkers of nicotine intake were found. The e-cigarette-only and NRT-only users had significantly lower metabolite levels for TSNAs (including the carcinogenic metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol [NNAL]) and VOCs (including metabolites of the toxins acrolein; acrylamide; acrylonitrile; 1,3-butadiene; and ethylene oxide) than combustible cigarette-only, dual combustible cigarette-e-cigarette, or dual combustible cigarette-NRT users. The e-cigarette-only users had significantly lower NNAL levels than all other groups. Combustible cigarette-only, dual combustible cigarette-NRT, and dual combustible cigarette-e-cigarette users had largely similar levels of TSNA and VOC metabolites. LIMITATION: Cross-sectional design with self-selected sample. CONCLUSION: Former smokers with long-term e-cigarette-only or NRT-only use may obtain roughly similar levels of nicotine compared with smokers of combustible cigarettes only, but results varied. Long-term NRT-only and e-cigarette-only use, but not dual use of NRTs or e-cigarettes with combustible cigarettes, is associated with substantially reduced levels of measured carcinogens and toxins relative to smoking only combustible cigarettes. PRIMARY FUNDING SOURCE: Cancer Research UK

    Urinary concentrations of PAH and VOC metabolites in marijuana users

    Get PDF
    Background: Marijuana is seeing increased therapeutic use, and is the world\u27s third most-popular recreational drug following alcohol and tobacco. This widening use poses increased exposure to potentially toxic combustion by-products from marijuana smoke and the potential for public health concerns. Objectives: To compare urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) among self-reported recent marijuana users and nonusers, while accounting for tobacco smoke exposure. Methods: Measurements of PAH and VOC metabolites in urine samples were combined with questionnaire data collected from participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to 2012 in order to categorize participants (≥18 years) into exclusive recent marijuana users and nonusers. Adjusted geometric means (GMs) of urinary concentrations were computed for these groups using multiple regression analyses to adjust for potential confounders. Results: Adjusted GMs of many individual monohydroxy PAHs (OH-PAHs) were significantly higher in recent marijuana users than in nonusers (p\u3c0.05). Urinary thiocyanate (p\u3c0.001) and urinary concentrations of many VOC metabolites, including metabolites of acrylonitrile (p\u3c0.001) and acrylamide (p\u3c0.001), were significantly higher in recent marijuana users than in nonusers. Conclusions: We found elevated levels of biomarkers for potentially harmful chemicals among self-identified, recent marijuana users compared with nonusers. These findings suggest that further studies are needed to evaluate the potential health risks to humans from the exposure to these agents when smoking marijuana

    Assessment of Exposure to VOCs among Pregnant Women in the National Children’s Study

    No full text
    Epidemiologic studies can measure exposure to volatile organic compounds (VOCs) using environmental samples, biomarkers, questionnaires, or observations. These different exposure assessment approaches each have advantages and disadvantages; thus, evaluating relationships is an important consideration. In the National Children’s Vanguard Study from 2009 to 2010, participants completed questionnaires and data collectors observed VOC exposure sources and collected urine samples from 488 third trimester pregnant women at in-person study visits. From urine, we simultaneously quantified 28 VOC metabolites of exposure to acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, carbon disulfide, crotonaldehyde, cyanide, N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene exposures using ultra high performance liquid chromatography coupled with an electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS) method. Urinary thiocyanate was measured using an ion chromatography coupled with an electrospray ionization tandem mass spectrometry method (IC-ESI/MSMS). We modeled the relationship between urinary VOC metabolite concentrations and sources of VOC exposure. Sources of exposure were assessed by participant report via questionnaire (use of air fresheners, aerosols, paint or varnish, organic solvents, and passive/active smoking) and by observations by a trained data collector (presence of scented products in homes). We found several significant (p < 0.01) relationships between the urinary metabolites of VOCs and sources of VOC exposure. Smoking was positively associated with metabolites of the tobacco constituents acrolein, acrylamide, acrylonitrile, 1,3-butadiene, crotonaldehyde, cyanide, ethylene oxide, N,N-dimethylformamide, propylene oxide, styrene, and xylene. Study location was negatively associated with the toluene metabolite N-acetyl-S-(benzyl)-l-cysteine (BMA), and paint use was positively associated with the xylene metabolites 2-methylhippuric acid (2MHA) and 3-Methylhippuric acid & 4-methylhippuric acid (3MHA + 4MHA). A near-significant (p = 0.06) relationship was observed between acrylamide metabolites and observation of incense
    corecore