38 research outputs found

    De novo Ring Chromosome 6 in a Child with Multiple Congenital Anomalies

    Get PDF
    Ring chromosome 6, especially if it is de novo, is a rare occurrence. The phenotype of patients with ring chromosome 6 can be highly variable ranging from almost normal to severe malformations and mental retardation. The size and structure of the ring chromosome as well as the level of mosaicism are important factors in determining the clinical phenotype. Here we report an eight month-old child, a product of a non consanguineous marriage, who presented with developmental retardation, hypertelorism, microcephaly, flat occiput, broad nasal bridge, large ears, micrognathia, wide spaced nipples, protruding umbilicus, short stubby fingers, clinodactyly, single palmar crease, short neck with no obvious webbing, and congenital heart defect. Conventional karyotyping and Whole Chromosome Paint of the peripheral leukocytes showed 46,XY,r(6)(p25q27) karyotype with plausible breakpoints at p25 and q27 end. Conventional karyotyping of both parents showed normal karyotype. To the best of our knowledge, this is the first report of a Malay individual with ring chromosome 6, and this report adds to the collective knowledge of this rare chromosome abnormality

    Development of comparative genomic hybridization(CGH) technique for the study of nasopharyngeal carcinoma(NPC)

    Get PDF
    NPC is a disease in which malignant cells are formed in the tissue of nasopharynx. It is a highly prevalent disease in Southern China and Southeast Asia including Malaysia. CGH is a molecular cytogenetic technique which is used to identify imbalanced genetic alterations in this malignancy. Twenty eight samples were obtained. Out of this; twelve tumors were extracted from twelve NPC biopsies while twelve references DNA was extracted from twelve normal controls peripheral blood. Tumor DNA and normal DNA was labeled by nick translation method with green and red fluorescent dyes. These were hybridized at metaphase chromosomes DNA and counterstained with DAPL Finally, the image was captured and analyzed. Chromosomal gains that were found in this study were 4q26, llql3-ql4, 9pl3, 8ql3-q22 and 10q22- q26 while chromosomal losses were found at region 20p12 and 13q21-q31. We believe this study has provided the platform for further investigations to locate possible tumorsuppressor genes and oncogenes in our NPC patients

    Molecular analysis of promoter region of the SMN2 gene in the patients of spinal musculatr atrophy.

    Get PDF
    Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by the absence of the full length SMN protein (FL-SMN) as a result of mutation or deletion of SMN1 gene. The isoform to this gene, SMN2 gene, with mutation in 1 base pair, encodes for 10% of FL-SMN protein and is reported to decrease the severity of the disease when there is an increase gene dosage. There are 3 clinical types of SMA; type I, type II and type III. Type I SMA is the most severe type and only a small amount of FL-SMN protein is present in these individuals. We postulated that the difference in the promoter region of SMN2 gene produces the different level of FL-SMN protein. To verify this hypothesis, the DNA samples of 69 SMA patients who were referred to the Human Genome Center, USM were extracted from their blood. The SMN1 deletion analysis was performed, followed by the SMN2 copy no. analysis and NAIP deletion analysis to remove any clinical bias as NAIP gene deletion and SMN2 copy number have been reported to be associated with SMA disease severity. Only 10 SMA patients from different clinical types (type I=2, type II=3, type III=5) with homozygous deletion of the SMN1 and 2 copies of the SMN2 and deletion in NAIP were finally recruited. Primers were designed for the amplification of the SMN2 promoter region. Bioinformatics analysis was performed to identify the crucial transcription factor binding sites within the reported ~4.6 kb promoter region. As the core promoter region is still unknown (unreported), we analyzed 15 ORFs and 24 nested ORFs with 15 TATA boxes reflecting the diverse functional integrity of this region. The promoter prediction and core promoter prediction was also performed. Based on the bioinformatics analysis and the designed primers, PCR amplification was done for different regions in the promoter and the PCR products were subjected to direct DNA sequencing. The results were analyzed by Vector NTI suite 9, ClustalX and Gene Doc softwares. The molecular analysis confirmed the absence of any mutation in the promoter region of the SMN2 gene between normal healthy individuals (total 2) and SMA patients. In 4 patients and 1 normal healthy individual the CA repeats were found to be increased which we think cause no effect in disease progression and severity. In conclusion, there was no mutation found in the promoter region of the SMN2 gene among the SMA patients of different clinical types and normal controls. Further analysis involving the cloning of the promoter regions with highest probability of involvement in expression of the SMN2 gene using luciferase assay is ongoing. The results will be useful for the subsequent phase of the study involving the transcription initiation of the SMN2 gene

    Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    Get PDF
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia

    The first Malay database toward the ethnic-specific target molecular variation

    Get PDF
    BACKGROUND:The Malaysian Node of the Human Variome Project (MyHVP) is one of the eighteen official Human Variome Project (HVP) country-specific nodes. Since its inception in 9(th) October 2010, MyHVP has attracted the significant number of Malaysian clinicians and researchers to participate and contribute their data to this project. MyHVP also act as the center of coordination for genotypic and phenotypic variation studies of the Malaysian population. A specialized database was developed to store and manage the data based on genetic variations which also associated with health and disease of Malaysian ethnic groups. This ethnic-specific database is called the Malaysian Node of the Human Variome Project database (MyHVPDb). FINDINGS:Currently, MyHVPDb provides only information about the genetic variations and mutations found in the Malays. In the near future, it will expand for the other Malaysian ethnics as well. The data sets are specified based on diseases or genetic mutation types which have three main subcategories: Single Nucleotide Polymorphism (SNP), Copy Number Variation (CNV) followed by the mutations which code for the common diseases among Malaysians. MyHVPDb has been open to the local researchers, academicians and students through the registration at the portal of MyHVP ( http://hvpmalaysia.kk.usm.my/mhgvc/index.php?id=register ). CONCLUSIONS:This database would be useful for clinicians and researchers who are interested in doing a study on genomics population and genetic diseases in order to obtain up-to-date and accurate information regarding the population-specific variations and also useful for those in countries with similar ethnic background

    Identification of Close Relatives in the HUGO Pan-Asian SNP Database

    Get PDF
    The HUGO Pan-Asian SNP Consortium has recently released a genome-wide dataset, which consists of 1,719 DNA samples collected from 71 Asian populations. For studies of human population genetics such as genetic structure and migration history, this provided the most comprehensive large-scale survey of genetic variation to date in East and Southeast Asia. However, although considered in the analysis, close relatives were not clearly reported in the original paper. Here we performed a systematic analysis of genetic relationships among individuals from the Pan-Asian SNP (PASNP) database and identified 3 pairs of monozygotic twins or duplicate samples, 100 pairs of first-degree and 161 second-degree of relationships. Three standardized subsets with different levels of unrelated individuals were suggested here for future applications of the samples in most types of population-genetics studies (denoted by PASNP1716, PASNP1640 and PASNP1583 respectively) based on the relationships inferred in this study. In addition, we provided gender information for PASNP samples, which were not included in the original dataset, based on analysis of X chromosome data

    Global Globin Network Consensus Paper: Classification and Stratified Roadmaps for Improved Thalassaemia Care and Prevention in 32 Countries

    Get PDF
    The Global Globin Network (GGN) is a project-wide initiative of the Human Variome/Global Variome Project (HVP) focusing on haemoglobinopathies to build the capacity for genomic diagnosis, clinical services, and research in low- and middle-income countries. At present, there is no framework to evaluate the improvement of care, treatment, and prevention of thalassaemia and other haemoglobinopathies globally, despite thalassaemia being one of the most common monogenic diseases worldwide. Here, we propose a universally applicable system for evaluating and grouping countries based on qualitative indicators according to the quality of care, treatment, and prevention of haemoglobinopathies. We also apply this system to GGN countries as proof of principle. To this end, qualitative indicators were extracted from the IthaMaps database of the ITHANET portal, which allowed four groups of countries (A, B, C, and D) to be defined based on major qualitative indicators, supported by minor qualitative indicators for countries with limited resource settings and by the overall haemoglobinopathy carrier frequency for the target countries of immigration. The proposed rubrics and accumulative scores will help analyse the performance and improvement of care, treatment, and prevention of haemoglobinopathies in the GGN and beyond. Our proposed criteria complement future data collection from GGN countries to help monitor the quality of services for haemoglobinopathies, provide ongoing estimates for services and epidemiology in GGN countries, and note the contribution of the GGN to a local and global reduction of disease burden

    Pharmacogenetics of hypertension: a study of the single nucleotide polymorphisms of the CYP2D6 and Beta-2 AR gene

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    THE USE OF SNPS IN PHARMACOGENOMICS STUDIES

    No full text
    Pharmacogenomics is the study of how genetic makeup determines the response to a therapeutic intervention. It has the potential to revolutionize the practice of medicine by individualisation of treatment through the use of novel diagnostic tools . This new science should reduce the trial-and-error approach to the choice of treatment and thereby limit the exposure of patients to drugs that are not effective or are toxic for them. Single Nucleotide Polymorphisms (SNPs) holds the key in defining the risk of an individual'or Linkage disequilibrium (LD) mapping approaches. Concerns about the required patient sample sizes, the extent of LD, the number of SNPs needed in a map, the cost of genotyping SNPs, and the interpretation of results are some of the challenges that surround this field. While LD mapping is appealing in that it is an unbiased approach and allows a comprehensive genome-wide survey, the challenges and limitations are significant. An alternative such as the candidate gene approach does offer several advantages over LD mapping. Ultimately, as all human genes are discovered, the need for random SNP markers diminishes and gene-based SNP approaches will predominate. The challenges will then be to demonstrate convincing links between genetic variation and drug responses and to translate that information into useful pharmacogenomic test
    corecore