45 research outputs found

    An Overview of Functional Food

    Get PDF
    Functional foods are responsible for the improvement of human health and can significantly reduce the probability of disease in the host body. Functional foods are directly or indirectly part of different food ingredients and can induce functional activities in the host biological system. Functional foods are present in fruits, vegetables, dairy, bakery, cereals and meat products. Functional foods are not additional food supplements, drugs or antibiotics, they are the main component of a normal human and animal diet. Functional foods are cost-effective and easily available in the market. Daily consumption of functional foods can prevent the gastrointestinal diseases and also provide ease against different acute and chronic diseases. Adequate administration of probiotics in a human food can convert a normal food into functional food. This chapter will highlight the effective role of functional food in an individual’s daily life

    Programming SDN-Native big data applications: research gap analysis

    No full text
    Software-Defined Networking has involved as a preferred abstraction for sharing network resources within a cloud datacenter in response to simultaneous data retrieval and computation demands from around the world. However, several research challenges need to be investigated before SDN powered-cloud datacenters are able to efficiently process big data as defined by its “4V” characteristics. Big data enabled systems have to be able to respond to concurrent requests and allocate computing (e.g., virtual machine instances), storage (e.g., disk space) and networking (e.g., bandwidth) resources efficiently and effectively

    Programming SDN-Native Big Data Applications: Research Gap Analysis

    No full text

    AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data Systems

    No full text

    Using Halothermal Time Model to Describe Barley (<i>Hordeumvulgare</i> L.) Seed Germination Response to Water Potential and Temperature

    No full text
    Barley (Hordeum vulgare L.) is a salt-tolerant crop with considerable economic value in salinity-affected arid and semiarid areas. In the laboratory experiment, the halothermal time (HaloTT) model was used to examine barley seed germination (SG) at six constant cardinal temperatures (Ts) of 15, 20, 25, 30, 35, and 40 °C under five different water potentials (ψs) of 0, −0.5, −1.5, −1.0, and −2.0 MPa. Results showed that at optimum moisture (0 MPa), the highest germination percentage (GP) was recorded at 20 °C and the lowest at 40 °C. Moreover, GP increased with the accelerated aging period (AAP) and significantly (p ≤ 0.05) decreased with high T. In addition, with a decrease of ψ from 0 to −0.5, −1, 1.5, and −2.0 MPa, GP decreased by 93.33, 76.67, 46.67, and 33.33%, respectively, in comparison with 0 MPa. The maximum halftime constant (θHalo) and coefficient of determination (R2) values were recorded at 20 °C and 30 °C, respectively. The optimum temperature (To) for barley is 20 °C, base Ψ of 50th percentile (Ψb (50)) is −0.23 Mpa, and standard deviation of Ψb (σΨb) is 0.21 MPa. The cardinal Ts for germination is 15 °C (Tb), 20 °C (To), and 40 °C (Tc). The GP, germination rate index (GRI), germination index (GI), coefficient of the velocity of germination (CVG), germination energy (GE), seed vigor index I and II (SVI-I & II), Timson germination index (GI), and root shoot ratio (RSR) were recorded maximum at 0 MPa at 20 °C and minimum at −2.0 MPa at 40 °C. Mean germination time (MGT) and time to 50% germination (T 50%) were maximum at −2 MPa at 40 °C, and minimum at 20 °C, respectively. In conclusion, the HaloTT model accurately predicted the germination time course of barley in response to T, Ψ, or NaCl. Therefore, barley can be regarded as a salt-tolerant plant and suitable for cultivation in arid and semi-arid regions due to its high resistance to salinity
    corecore