6 research outputs found

    The Value of Comparative Animal Research : Krogh’s Principle Facilitates Scientific Discoveries

    Get PDF
    There are no conflicts of interest to declare. This paper developed from the 2016 Early Career Impact Award from the Federation of Associations in Behavioral & Brain Sciences to TJS. TJS has received funding from The Leverhulme Trust. FJPE is in receipt of funding from the BBSRC (BB/M001555/1). The National Institutes of Health has funded RDF (NS 034950, NS093277, NIMH 087930), AGO (HD079573, IOS-1354760) and AMK (HD081959). BAA is an Arnold O. Beckman postdoctoral fellow.Peer reviewedPostprin

    Pleiotropic Control by Testosterone of a Learned Vocal Behavior and Its Underlying Neuroplasticity(1,2,3).

    Full text link
    Steroid hormones coordinate multiple aspects of behavior and physiology. The same hormone often regulates different aspects of a single behavior and its underlying neuroplasticity. This pleiotropic regulation of behavior and physiology is not well understood. Here, we investigated the orchestration by testosterone (T) of birdsong and its neural substrate, the song control system. Male canaries were castrated and received stereotaxic implants filled with T in select brain areas. Implanting T solely in the medial preoptic nucleus (POM) increased the motivation to sing, but did not enhance aspects of song quality such as acoustic structure and stereotypy. In birds implanted with T solely in HVC (proper name), a key sensorimotor region of the song control system, little or no song was observed, similar to castrates that received no T implants of any sort. However, implanting T in HVC and POM simultaneously rescued all measures of song quality. Song amplitude, though, was still lower than what was observed in birds receiving peripheral T treatment. T in POM enhanced HVC volume bilaterally, likely due to activity-dependent changes resulting from an enhanced song rate. T directly in HVC, without increasing song rate, enhanced HVC volume on the ipsilateral side only. T in HVC enhanced the incorporation and recruitment of new neurons into this nucleus, while singing activity can independently influence the incorporation of new neurons into HVC. These results have broad implications for how steroid hormones integrate across different brain regions to coordinate complex social behaviors

    Social regulation of immediate early gene induction in gonadotropin releasing-hormone 1 neurons and singing behavior in canaries (Serinus canaria)

    No full text
    Social cues modulate the neuroendocrine control of reproduction. However, the neural systems involved in the integration of social cues are not well described. Gonadotropin-releasing hormone 1 (GnRH1) cells in the preoptic area (POA) are the final common node that links the brain with peripheral reproductive physiology. These experiments investigated whether induction of the immediate early gene, EGR1, in anatomically localized GnRH1 cell populations in Border canaries is regulated by the social environment. First, we characterized behavioral modifications in singing behavior and found males paired with a female for 2 weeks significantly reduced many aspects of singing behavior. However, paired males had a significantly higher percentage of GnRH1 cells co-labeled with EGR1. The second experiment manipulated the social environment by pairing males and females in mixed sex dyads, same sex dyads or housed birds in isolation. Only when birds are paired in mixed sex dyads was there a significantly greater percentage of GnRH1 cells expressing EGR1 cells. Increased GnRH1-EGR1 co-expression was localized to the rostral POA. These data reveal that discrete GnRH1 cells are involved in the neural integration of specific social cues and support the hypothesis that the POA exhibits functional topography related to courtship and sexual behaviors

    Aromatase inhibition rapidly affects in a reversible manner distinct features of birdsong

    Full text link
    Recent evidence has implicated steroid hormones, specifically estrogens, in the rapid modulation of cognitive processes. Songbirds have been a useful model system in the study of complex cognitive processes including birdsong, a naturally learned vocal behavior regulated by a discrete steroid-sensitive telencephalic circuitry. Singing behavior is known to be regulated by long-term actions of estrogens but rapid steroid modulation of this behavior has never been examined. We investigated if acute actions of estrogens regulate birdsong in canaries (Serinus canaria). In the morning, male canaries sing within minutes after light onset. Birds were injected with fadrozole, a potent aromatase inhibitor, or vehicle within 2-5 minutes after lights on to implement a within-subjects experimental design. This single injection of fadrozole reduced the motivation to sing as well as song acoustic stereotypy, a measure of consistency over song renditions, on the same day. By the next day, however, all song measures that were affected had returned to baseline. This study indicates that estrogens also act in a rapid fashion to regulate two distinct features of song, a learned vocal behavior

    Dissociable effects of social context on song and doublecortin immunoreactivity in male canaries

    No full text
    Variation in environmental factors such as day length and social context greatly affects reproductive behavior and the brain areas that regulate these behaviors. One such behavior is song in songbirds, which males use to attract a mate during the breeding season. In these species the absence of a potential mate leads to an increase in the number of songs produced, while the presence of a mate greatly diminishes singing. Interestingly, although long days promote song behavior, producing song itself can promote the incorporation of new neurons in brain regions controlling song output. Social context can also affect such neuroplasticity in these song control nuclei. The goal of the present study was to investigate in canaries (Serinus canaria), a songbird species, how photoperiod and social context affect song and the incorporation of new neurons, as measured by the microtubule‐associated protein doublecortin (DCX) in HVC, a key vocal production brain region of the song control system. We show that long days increased HVC size and singing activity. In addition, male canaries paired with a female for 2 weeks showed enhanced DCX‐immunoreactivity in HVC relative to birds housed alone. Strikingly, however, paired males sang fewer songs that exhibited a reduction in acoustic features such as song complexity and energy, compared with birds housed alone, which sang prolifically. These results show that social presence plays a significant role in the regulation of neural and behavioral plasticity in songbirds and can exert these effects in opposition to what might be expected based on activity‐induced neurogenesis
    corecore