146 research outputs found

    Spatial Evaluation and Modeling of Dengue Seroprevalence and Vector Density in Rio de Janeiro, Brazil

    Get PDF
    Dengue is a major public health problem in many tropical regions of the world, including Brazil, where Aedes aegypti is the main vector. We present a household study that combines data on dengue fever seroprevalence, recent dengue infection, and vector density, in three neighborhoods of Rio de Janeiro, Brazil, during its most devastating dengue epidemic to date. This integrated entomological–serological survey showed evidence of silent transmission even during a severe epidemic. Also, past exposure to dengue virus was highly associated with age and living in areas of high movement of individuals and social/commercial activity. No association was observed between household infestation index and risk of dengue infection in these areas. Our findings are discussed in the light of current theories regarding transmission thresholds and relative role of mosquitoes and humans as vectors of dengue viruses

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    • …
    corecore