1,265 research outputs found

    Intersymbol and Intercarrier Interference in OFDM Transmissions through Highly Dispersive Channels

    Get PDF
    This work quantifies, for the first time, intersymbol and intercarrier interferences induced by very dispersive channels in OFDM systems. The resulting achievable data rate for \wam{suboptimal} OFDM transmissions is derived based on the computation of signal-to-interference-plus-noise ratio for arbitrary length finite duration channel impulse responses. Simulation results point to significant differences between data rates obtained via conventional formulations, for which interferences are supposed to be limited to two or three blocks, versus the data rates considering the actual channel dispersion

    Multichannel Source Separation Using Time-Deconvolutive CNMF

    Get PDF
    This paper addresses the separation of audio sources from convolutive mixtures captured by a microphone array. We approach the problem using complex-valued non-negative matrix factorization (CNMF), and extend previous works by tailoring advanced (single-channel) NMF models, such as the deconvolutive NMF, to the multichannel factorization setup. Further, a sparsity-promoting scheme is proposed so that the underlying estimated parameters better fit the time-frequency properties inherent in some audio sources. The proposed parameter estimation framework is compatible with previous related works, and can be thought of as a step toward a more general method. We evaluate the resulting separation accuracy using a simulated acoustic scenario, and the tests confirm that the proposed algorithm provides superior separation quality when compared to a state-of-the-art benchmark. Finally, an analysis of the effects of the introduced regularization term shows that the solution is in fact steered toward a sparser representation

    'Faster-than-Nyquist Signaling via Spatiotemporal Symbol-Level Precoding for Multi-User MISO Redundant Transmissions

    Get PDF
    This paper tackles the problem of both multi-user and intersymbol interference stemming from co-channel users transmitting at a faster-than-Nyquist (FTN) rate in multi-antenna downlink transmissions. We propose a framework for redundant block-based symbol-level precoders enabling the trade-off between constructive and destructive multi-user and interblock interference (IBI) effects at the single-antenna user terminals. Redundant elements are added as guard interval to handle IBI destructive effects. It is shown that, within this framework, accelerating the transmissions via FTN signaling improves the error-free spectral efficiency, up to a certain acceleration factor beyond which the transmitted information cannot be perfectly recovered by linear filtering followed by sampling. Simulation results corroborate that the proposed spatiotemporal symbol-level precoding can change the amount of added redundancy from zero (full IBI) to half (IBI-free) the equivalent channel order, so as to achieve a target balance between spectral and energy efficiencies

    Normalized LMS Algorithm and Data-selective Strategies for Adaptive Graph Signal Estimation

    Get PDF
    This work proposes a normalized least-mean-squares (NLMS) algorithm for online estimation of bandlimited graph signals (GS) using a reduced number of noisy measurements. As in the classical adaptive filtering framework, the resulting GS estimation technique converges faster than the least-mean-squares (LMS) algorithm while being less complex than the recursive least-squares (RLS) algorithm, both recently recast as adaptive estimation strategies for the GS framework. Detailed steady-state mean-squared error and deviation analyses are provided for the proposed NLMS algorithm, and are also employed to complement previous analyses on the LMS and RLS algorithms. Additionally, two different time-domain data-selective (DS) strategies are proposed to reduce the overall computational complexity by only performing updates when the input signal brings enough innovation. The parameter setting of the algorithms is performed based on the analysis of these DS strategies, and closed formulas are derived for an accurate evaluation of the update probability when using different adaptive algorithms. The theoretical results predicted in this work are corroborated with high accuracy by numerical simulations

    Frequency-Packed Faster-Than-Nyquist Signaling via Symbol-Level Precoding for Multiuser MISO Redundant Transmissions

    Get PDF
    This work addresses the issue of interference generated by co-channel users in downlink multi-antenna multicarrier systems with frequency-packed faster-than-Nyquist (FTN) signaling. The resulting interference stems from an aggressive strategy for enhancing the throughput via frequency reuse across different users and the squeezing of signals in the time-frequency plane beyond the Nyquist limit. The spectral efficiency is proved to be increasing with the frequency packing and FTN acceleration factors. The lower bound for the FTN sampling period that guarantees information losslesness is derived as a function of the transmitting-filter roll-off factor, the frequency-packing factor, and the number of subcarriers. Space-time-frequency symbol-level precoders (SLPs) that trade off constructive and destructive interblock interference (IBI) at the single-antenna user terminals are proposed. Redundant elements are added as guard interval to cope with vestigial destructive IBI effects. The proposals can handle channels with delay spread longer than the multicarrier-symbol duration. The receiver architecture is simple, for it does not require digital multicarrier demodulation. Simulations indicate that the proposed SLP outperforms zero-forcing precoding and achieves a target balance between spectral and energy efficiencies by controlling the amount of added redundancy from zero (full IBI) to half (destructive IBI-free) the group delay of the equivalent channel

    Data-driven Precoded MIMO Detection Robust to Channel Estimation Errors

    Get PDF
    We study the problem of symbol detection in downlink coded multiple-input multiple-output (MIMO) systems with precoding and without the explicit knowledge of the channel-state information (CSI) at the receiver. In this context, we investigate the impact of imperfect CSI at the transmitter (CSIT) on the detection performance. We first model the CSIT degradation based on channel estimation errors to investigate its impact on the detection performance at the receiver. To mitigate the effect of CSIT deterioration at the latter, we propose learning based techniques for hard and soft detection that use downlink precoded pilot symbols as training data. We note that these pilots are originally intended for signal-to-interference-plus-noise ratio (SINR) estimation. We validate the approach by proposing a lightweight implementation that is suitable for online training using several state-of-the-art classifiers. We compare the bit error rate (BER) and the runtime complexity of the proposed approaches where we achieve superior detection performance in harsh channel conditions while maintaining low computational requirements. Specifically, numerical results show that severe CSIT degradation impedes the correct detection when a conventional detector is used. However, the proposed learning-based detectors can achieve good detection performance even under severe CSIT deterioration, and can yield 4-8 dB power gain for BER values lower than 10-4 when compared to the classic linear minimum mean square error (MMSE) detector

    Diffusion-based Virtual Graph Adjacency for Fourier Analysis of Network Signals

    Get PDF
    This work proposes a graph model for networks where node collaborations can be described by the Markov property. The proposed model augments an initial graph adjacency using diffusion distances. The resulting virtual adjacency depends on a diffusion-scale parameter, which leads to a controlled shift in the graph-Fourier-transform spectrum. This enables a frequency analysis tailored to the actual network collaboration, revealing more information on the graph signal when compared to traditional approaches. The proposed model is employed for anomaly detection in real and synthetic networks, and results confirm that using the proposed virtual adjacency yields better classification than the initial adjacency

    Joint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning

    Get PDF
    We tackle the problem of forecasting network-signal snapshots using past signal measurements acquired by a subset of network nodes. This task can be seen as a combination of multivariate time-series forecasting (temporal prediction) and graph signal interpolation (spatial prediction). This is a fundamental problem for many applications wherein deploying a high granularity network is impractical. Our solution combines recurrent neural networks with frequency-analysis tools from graph signal processing, and assumes that data is sufficiently smooth with respect to the underlying graph. The proposed learning model outperforms state-of-the-art deep learning techniques, especially when predictions are made using a small subset of network nodes, considering two distinct real world datasets: temperatures in the US and speed flow in Seattle. The results also indicate that our method can handle noisy signals and missing data, making it suitable to many practical applications
    corecore