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Abstract—We tackle the problem of forecasting network-signal
snapshots using past signal measurements acquired by a subset of
network nodes. This task can be seen as a combination of multi-
variate time-series forecasting (temporal prediction) and graph-
signal interpolation (spatial prediction). This is a fundamental
problem for many applications wherein deploying a high gran-
ularity network is impractical. Our solution combines recurrent
neural networks with frequency-analysis tools from graph signal
processing, and assumes that data is sufficiently smooth with
respect to the underlying graph. The proposed learning model
outperforms state-of-the-art deep learning techniques, especially
when predictions are made using a small subset of network nodes,
considering two distinct real world datasets: temperatures in the
US and speed flow in Seattle. The results also indicate that our
method can handle noisy signals and missing data, making it
suitable to many practical applications.

Index Terms—Multivariate time series, forecasting and inter-
polation, deep learning, recurrent neural networks (RNNs), graph
signal processing (GSP)

I. INTRODUCTION

PATIOTEMPORAL (ST) prediction is a fundamental ab-

stract problem featuring in many practical applications,
including climate analyses [1], transportation management [2],
neuroscience [3], electricity markets [4], and several geograph-
ical phenomenon analyses [5]. The temperature in a city, for
instance, is influenced by its location, by the season, and
even by the hour of the day. Another example of data with
ST dependencies is the traffic state of a road, since it is
influenced by adjacent roads and also by the hour of the day.
ST prediction boils down to forecasting (temporal prediction)
and interpolation (spatial prediction). The former refers to
predicting some physical phenomenon using historical data
acquired by a network of spatially-distributed sensors. The
latter refers to predicting the phenomenon with a higher spatial
resolution. In this context, ST data can be seen as a network
signal in which a time series is associated with each network
element; the dynamics (time-domain evolution) of the time se-
ries depends on the network structure (spatial domain), rather
than on the isolated network elements only. The interpolation
is useful to generate a denser (virtual) network.
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Classical predictive models generally assume independence
of data samples and disregard relevant spatial informa-
tion [6], [7]. Vector autoregressive (VAR) [8], a statistical
multivariate model, and machine learning (ML) approaches,
such as support vector regression (SVR) [9] and random forest
regression [10], can achieve higher accuracy than classical pre-
dictive models; yet, they fail to fully capture spatial relations.
More recently, some progress has been made by applying
neural networks! (NNs) to predict ST data [1], [2], [11]-[14].
NNs have the capacity of not only mapping an input data to an
output, but also of learning a useful representation to improve
the mapping accuracy [15]. Nonetheless, due to their high
complexity, the fully-connected architectures of these NNs
may fail to extract simultaneous spatial and temporal features
from data, making it difficult to generalize the model.

In order to learn spatial information from these multivariate
time series, some works have combined convolutional NNs
(CNNs) with recurrent NNs (RNNs), such as long short-term
memory (LSTM) [16]-[20]. However, CNNs are restricted
to grid-like uniformly structured data, such as images and
videos. To overcome this issue, and inspired by graph? signal
processing (GSP), some works have developed convolutions
on graph-structured data (graph signals) [21]-[25], which have
been used in combination with either RNN, time convolution,
and/or attention mechanisms to make predictions in a variety
of applications. These works are summarized in TABLE 1.

GSP theory has been applied to analyze/process many
irregularly structured datasets in several applications [62]. An
import task addressed by GSP is interpolation on graphs,
i.e., (spatially) predicting the signals on a subset of graph
nodes based on known signal values from other nodes [63].
In general, graph interpolation is based on local or global
approaches. Local methods, such as k-nearest neighbors (k-
NNs) [64], compute the unknown signal values in a set of
network nodes using values from their closest neighbors, being
computationally efficient. Global methods, on the other hand,
interpolate the unknown signal values at once and can provide
better results by taking the entire network into account at the
expensive of a higher computational burden [63], [65]. Many
GSP interpolation schemes have been proposed [66]-[70].

It is not always possible to deploy a very large number of
sensors due to limited physical space or budget constraints;
for example, placing many electrodes at once in the human

In this paper the word “network” can refer to a neural network in the
context of deep learning or a physical network that is represented by a graph.

2Graphs are mathematical structures able to represent rather general
datasets, including ST data with irregular domains, as in sensor networks.
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TABLE I: Summary of recent works that use deep learning to
predict ST data. First column defines the application. Second
and third columns refer to the spatial and temporal techniques
employed, respectively. “Conv.” means temporal convolution;
AE means auto encoder; RBM means restricted Boltzman
machine; “other” encompasses other predictive strategies, such
as attention mechanisms

Application GSP Temporal Reference
RNN [25], [26]-[31]
Yes Conv. [32]-[37]
th 38], [3
traffic omer (381, 9]
N RNN [17], [20], [40]-[44],
o
other [2], [19], [45]-[49]
Yes RNN [50]
wind RNN [14]
No
other [51]1-[53]
Yes AE [54]
meteorological RNN [16]
No
other [5], [55]
body-motion Yes RNN [56]-[58]
) Yes Conv. [59]
neuroscience
No RBM [60]
semantic Yes RNN [61]

cortex may be unfeasible. Installation and maintenance costs
of devices can also limit the number of sensors deployed
in a network [71]. In order to better elucidate this problem,
consider a network of sensors and suppose that there is interest
in collecting signals over spatial points where there are no
deployed sensors. The entire network, composed of deployed
and non-deployed sensors, can be represented by a “virtual”
graph, in which the deployed sensors comprise a sample of
nodes (i.e., they form a sparser graph). Thus, developing a pre-
dictive model capable of forecasting (temporal prediction) and
interpolating (spatial prediction) time-varying signals defined
on graph nodes can be of great applicability. This problem can
be regarded as a semi-supervised task, since only part of the
nodes is available for training. Other works have addressed
this problem: in [72] the graph is extended to incorporate
the time dimension and a kernel-based algorithm is used for
prediction; this approach, therefore, relies on the assumption
of smoothness in the time domain, which is not reasonable
for many applications, such as traffic flow prediction. In [50],
the ST wind speed model is evaluated in a semi-supervised
framework in which only part of the nodes is used for training
the model, while interpolation is performed only in test phase.
Therefore, the parameters learned during the training phase do
not take into account the interpolation aspect. Note that the
joint forecasting and interpolation is slightly different from
tracking, which is already tackled by the GSP literature [73],
[74]; in tracking, the values associated with the in-sample
nodes in the current timestep are available and only the values
associated with the out-of-sample nodes in the current timestep
are targeted by the model, whereas, in prediction, the entire

graph signal (GS) in the current timestep is targeted.

Two straightforward solutions to deal with the problem of
forecasting and interpolating sampled GSs are:* (i) applying
a forecasting model to the input GS and then interpolating
the output; or (ii) interpolating the sampled GS and then
feeding it to the forecasting model. These solutions tackle
the ST prediction task separately and may fail to capture the
inherent coupling between time and space domains, especially
due to the low availability of spatial information. In this
paper, a graph-based NN architecture is proposed to handle ST
correlations by employing GSP in conjunction with a gated-
recurrent unit (GRU). Thus, we address the inherent nature of
ST data by jointly forecasting and interpolating the underlying
network signals. A global interpolation approach is adopted
as it provides accurate results when the signal is smooth in
the GSP sense, whereas an RNN forecasting model is adopted
given its prior success in network prediction. We consider that
both the sampled GS and its spectral components — i.e., the
Fourier coefficients, which carry spatial information on the
underlying graph — work as inputs to a predictive model.
The major contribution of the proposed learning model is,
therefore, the ability to predict ST data by observing only
a few nodes of the entire network.

Considering the proposed learning model, we introduce four
possible classes of problems:

« supervised applications, where the labels of all nodes are
available for training but only a fixed subset of graph
nodes can be used as input to the model in the test phase;

« semi-supervised application, wherein only data associated
with a subset of nodes are available for training and
computing gradients;

« noise-corrupted application, in which all nodes are avail-
able during the entire process, but additive noise corrupts
the network signals;

« missing-value application, where a time-varying fraction
of nodes are available for testing, but all nodes can be
used for training.

The proposed learning model outperforms (in terms of root
mean square error) all tested deep learning (DL) based bench-
marks in 27 out of the 30 tested scenarios.

The paper is organized as follows: Section II presents some
fundamental aspects of GSP, focusing on the sampling theory
that will be used to build the interpolation module of the pro-
posed learning model. Section III describes the new learning
framework. Section IV describes four classes of applications
that can benefit from the proposal. Section V presents the
numerical results and related discussions. Section VI contains
the concluding remarks of the paper.

II. BACKGROUND

Let G £ (V,&, A) be a weighted undirected and connected
graph, where V £ {v1,...,un} is the set of N nodes, & is the
set of edges, and A is the N x N adjacency matrix containing
edge weights A,,,,,. The adjacency matrix can be a similarity

3A network signal to be interpolated can be initially modeled by a GS,
which in turn can be regarded as a sampled version of a (higher dimension)
GS defined over a denser set of nodes belonging to a virtual graph.
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TABLE II: Notations

Notation Definition

g graph

1% entire set of graph nodes

S subset of graph nodes

F subset of graph spectrum

S the complement of the set S

L Laplacian matrix

U matrix of Laplacian eigenvectors

U. r submatrix of U with columns in the set F
Us. 7 submatrix of U with columns in F and rows in S
¥s sampling operator V — S

L interpolation operator S — V

XS signal x restricted to the set S (sampled GS)
XF frequency content of the GS x restricted to F

matrix or be built based on prior information, such as nodes’
locations in the physical network. A GS is a real-valued scalar
function « : ¥V — R taking values on the graph nodes, and
it will be represented by the /N-dimensional vector x with
entries [X],, =z, = z(vy).

The diagonal matrix D € is the degree matrix in
which D,,,, = Zm A,,m measures the connectivity degree of
each node.

Most of the graph convolutions in the literature are based
on the Laplacian matrix L £ D — A, which is a semi-definite
matrix, for a symmetric adjacency A. Let U be the matrix of
orthonormal eigenvectors of L. The graph Fourier transform
(GFT) of the GS x is X £ UTx and the eigenvalues of L,
A1,...,An > 0, are considered as the graph frequencies. The
eigenvectors of the adjacency matrix can also be used as the
Fourier basis [75]. For the reader’s convenience, TABLE II
contains the main notations that will be used in this work.

RNXN

A. GS Sampling

Let S £ {s1,...,s07} C V be a subset of nodes with M <
N nodes; the vector of measurements xs € RM is given by
xs = Psx, where the sampling operator

1, ifv, =5,
(¥slnn = { 0, otherwise

selects from V the nodes in S. The interpolation operator ®s
is an N x M matrix such that the recovered signal is X =
PsTsx. If x = x, the pair of sampling and interpolation
operators (P, ¥s) can perfectly recover the signal x from
its sampled version. As the rank of $sWs is smaller or equal
to M, having X = x is not possible for all x € R when
M < N. However, perfect reconstruction can be achieved for
a class of bandlimited GS.

The GS xy, is said F-bandlimited if [%},], = 0 Vn such
that \,, € F C {A1,...,An}, that is, the frequency content
of xj, is restricted to the set of frequencies F. Some works
also restrict the support of the frequency content and consider
that a GS xy, is w-bandlimited if [Xy,],, = 0 Vn such that

6]

An > w [76]. In this paper, a bandlimited signal is a sparse
vector in the GFT domain. The following theorem guarantees
the perfect reconstruction of an F-bandlimited GS for some
sampling sets.

Theorem 1 ( [67], [66]) If the sampling operator W s satisfies
rank(PsU. 5) = |F| = K, ()

then
xp = Ps¥sxy 3)

as long as ®s = U, £X, where X satisfies XU sU. r = Ig
and U, r is a submatrix of U with columns restricted to the
indices associated with the frequencies in F.

The condition in (2) is also equivalent to
Svmax(Ugﬁ}‘) < 17 (4)

where SV .« (.) stands for the largest singular value [77] and
S =V \ S. This means that no F-bandlimited signal over the
graph G is supported on S.

In order to have XWsU. r = Ix we must have M > K,
since rank(U. r) = K. If M > K, X is the pseudo-inverse
of ¥sU. r and the interpolation operator is

®=U. (U z%sU. 5) 'Ug ». )

Since U is non-singular, there is always at least a subset
S such that the condition in (2) is satisfied. Nonetheless,
for many choices of S, WsU, r can be full rank but ill-
conditioned, leading to large reconstruction errors, especially
in the presence of noisy measurements or in the case of ap-
proximately bandlimited GS. To overcome this issue, optimal
sampling strategies, in the sense of minimizing reconstruction
error, can be employed [67]. Note that ¢ depends on both &
and F, but this dependence is omitted for simplicity’s sake.

B. Approximately Bandlimited GS

In practice, most GSs are only approximately bandlimited
[78]. A GS is approximately (F, ¢)-bandlimited if [77]

X =Xp+mn, (6)

where xy, is an F-bandlimited GS and 7 is an F-bandlimited
GS such that ||n]]2 < e. If signal x is sampled on the subset
S and recovered by the interpolator in (5), the error energy of
the reconstructed signal is upper bounded by

[7ll2
cos(0s.7)’
where s 7 is the maximum angle between the subspace of
signals supported on S and the subspace of F-bandlimited GS.
It can be shown that cos(0s, 7) = SV in(¥sU. r); therefore,
in order to minimize the upper bound of the reconstruction
error in (7), the set S should maximize SV, (PsU. ).
Finding the optimal set S is a combinatorial optimization
problem, equivalent to the E-optimal design [79], that can
require an exhaustive search in all possible subsets of V with
size M. A suboptimal solution can be obtained by the greedy
search in [67, Algorithm 1].

1% —x]l2 <

(7
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Fig. 1: GRU cell.

C. Gated-Recurrent Unit

The proposed learning model described in Section III em-
ploys a GRU cell [80] as the basic building block. The GRU
cell is composed of a hidden state h?, which allows the weights
of the GRU to be shared across time, as well as by two gates
q’ and r’, which modulate the flow of information inside the
cell unit. Fig. 1 depicts the architecture of a GRU, where &'
and €' are the input and output signals, respectively. The
gates are given by:

q' =a(W,' + Vh'™! +by), (8)
r'=o(W,& +V,h'™" +b,), ©)
where {W,,V,, W, V,} C RM*M are matrices whose
entries are learnable weights, {b,,b,} C RM are the bias
parameters, and o(-) is the sigmoid function.
The update of the hidden state h? is a linear combination
of the previous hidden state and the candidate state c’:
¢! =o(W.£' +V.(h' ' or') +b,),
ht — qt @Ct + (1 _qt> ®ht—17

(10)
(1)

with © being the element-wise multiplication. Similar to
LSTM [81], the additive update of the hidden state can
handle long-term dependencies by avoiding a quick vanishing
of the errors in back-propagation, and by not overwriting
important features. The GRU structure was chosen to compose
the forecasting module of the proposed model because its
performance is usually on par with LSTM, but with a lower
computational burden [82]; nonetheless, it could be replaced
by an LSTM or any other type of RNN.

III. JOINT FORECASTING AND INTERPOLATION OF GSS

In this section, we propose an ST neural network to jointly
interpolate graph nodes and forecast future signal values. More
specifically, the task is to predict the future state x‘™? of a

4

yg+1 yt+1

Fig. 2: Proposed SG-GRU model. The input GS follows two
routes in parallel: in the upper route, the GRU followed by
interpolation is applied to the GS; in the bottom route, the GS
is transformed to the frequency domain before being processed
by the SGRU module and thereafter being interpolated. The
outputs of these two parallel processes are stacked into a single
vector, represented by operation “Vec”, and fed to an FC layer.

network given the history X% = {x%,...,x%5 ""1}.4 Thus, the
input signal is a GS composed of M nodes and the output GS
is a network-signal snapshot composed of N > M nodes. We
shall assume p = 1 to describe the proposed learning model
for the time being.

A. Forecasting Module

The proposed learning model in Fig. 2, named spectral
graph GRU (SG-GRU), combines a standard GRU cell applied
to the vertex-domain GSs comprising X% with a GRU cell
applied to the frequency-domain versions of the latter GSs
comprising th The GRU acting on frequency-domain signals
is named here spectral GRU (SGRU), and has the same
structure as the standard GRU, except for the dimension of
weight matrices and bias vectors, which are K x K and K,
respectively.’ The dimension of the hidden state is therefore
K. Note that the forecasting module is applied before the
interpolation. This architecture reduces the complexity of the
learning model since the matrices of learnable weights have
dimensions M x M, for the standard GRU cell, and K x K,
for the SGRU, instead of IV x [N, which would be the case if
the interpolation were applied before the forecasting module.

Assuming that the entire GS x is (F, €)-bandlimited, most
of the information about it is expected to be stored in Xr.
Then, given an admissible operator ¥ s, one has

€
[x — ®sPsx|2 < SV (12)

min(‘IlSU:,]:) .
The choice of F will be further discussed in the experiments
described in Section V.

The SGRU module in the proposed learning model pre-
dicts the (possibly time-varying) graph-frequency content of
the network signals. This is key to model the underlying
spatial information embedded in the graph-frequency content.
Besides, it is worth pointing out that the proposed SGRU

4The GS at timestamp ¢ is denoted by bold lowercase letter, x*, whereas
the history set containing the sampled GSs in previous timestamps is denoted
by bold capital letter, X%.

31t is possible to use only one of the branches of the proposed structure,
nonetheless preliminary experiments pointed to more promising results when
using both branches combined.
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is different from combining the spectral graph convolution
(SGCO) in [83] with a GRU: in both cases, the input signal
is previously transformed to the Fourier domain, )A(}, but for
the SGRU, equations (8)-(10) are composed of matrix-vector
multiplications, i.e., Wf{} as in a standard GRU, whereas
in the latter case (SGC-GRU), equations (8)-(10) would be
composed of element-wise vector multiplications, i.e., w@fctf,
with w € RX. Each component of the time-varying vector
xb, &1, is a time series and the SGRU is able to capture the
temporal pattern, considering the correlations among different
spectral components. Other graph forecasting architectures in
the literature are the gated graph recurrent neural networks
(GGRNN) [84] and the graph-LSTM [85]. These two learning
models replace the matrix-vector multiplications of the RNN
by graph convolutions using polynomial filters in the vertex
domain. In [84], the graph filter is given by a polynomial on
the shift operator of the graph model, whereas in [85] the graph
filter is given by the Chebyshev polynomial approximation. In
the SG-GRU, on the other hand, the lower branch applies a
standard GRU to the frequency content of the GS.

B. GS Interpolation

The outputs from the GRU, yf;“l, and from the SGRU ,it;l,
are interpolated by ®s and b5 = ®sU. 7, respectively. The
resulting N-dimensional vectors y‘*! and z'*! are stacked
in a single vector of size 2N which is processed by a fully
connected (FC) layer to yield

)'*(tJrl — @(ytJrl,ZtJrl)’ (13)

as illustrated in Fig. 2.

C. Loss Function

The loss function employed is the (empirical) mean square
error (MSE). In a supervised setup, the signal values from all
nodes are available for training, thus enabling the use of the
entire GS x'*! as label to compute the loss function. Given
the batch size T3, the loss function for supervised training is®

1 TI)
L :72 gttt _ 12,
s TbN po ||X X ||2

In a semi-supervised setup, on the other hand, only the
sampled ground-truth signal x?l can be accessed. In order to
achieve better predictions on the unknown nodes, we propose
to interpolate the sampled ground-truth signal by ®s before
computing the MSE, yielding

(14)

Ty
1
£ss =— )~(t+1 -7 Xt+1 27 (15)
N ; I (xs )2
where
T, ifv, €S
[Z(xs)l, = { [‘I’Sxt;—l}nv otherwise. (16)

The proposed model combines the interpolated temporal
prediction of the sampled graph signal x% in both vertex and

%No regularizer or dropout layer was used.

5

frequency domains. The spatial information provided by the
underlying graph structure is used both by the interpolation
and by the forecasting performed by the SGRU (restricted
to the spectral support F). The main advantages of this
architecture are the reduced complexity and computational
time since the loops of recurrence are applied to vectors
in smaller dimensions M and K. Moreover, the model can
learn during the training phase which representation, vertex
or frequency domains, is more informative to forecasting. It
is also worth mentioning that, different from [50], in which
the interpolation is addressed only in the test phase, in the
SG-GRU, the spatial prediction is taken into account in the
optimization of the model’s parameters in equation (16). The
main limitation of the proposed learning model concerns
the modeling mismatch, that is, when the graph signal is
not actually approximately bandlimited with respect to the
underlying graph. In this case, the SGRU may lack important
information and the interpolation might be affected.

D. Computational Complexity

The SG-GRU consists of two GRU cells, called GRU and
SGRU, which compute 6 matrix-vector multiplications each.
The dimensions of the weight matrices in these recurrent
modules applied on the vertex and frequency domains are M2
and K2, respectively, where K was set to % in this paper (this
choice will be further discussed in Section V). The input of the
SGRU is the frequency-domain representation of the sampled
GS restricted to the frequencies in JF, which is obtained by
applying the truncated GFT matrix — the K x M matrix
Ug 7 — to the sampled GSs. This transform can be pre-
computed, avoiding the matrix vector multiplication during the
loop recurrence. In this case the input of the network becomes
a signal with dimension M + K. The output of the GRU and
the SGRU are, thereafter, interpolated by NV x M and N x K
matrices, respectively, which are pre-computed before running
the model. Finally, an FC layer is applied to the interpolated
signals, costing 2N? flops. Note that the truncated GFT, the
interpolations, and the FC layers are out of the recurrence loop
and do not increase the computational cost if a larger sequence
length 7 is used. Thus, the computational cost per iteration of
the SG-GRU is

KM +6r(M? + K?)+ N(K + M) +2N? [flops]. (17)

IV. APPLICATIONS

The proposed learning model in Fig. 2 can handle both
supervised and semi-supervised scenarios. In the supervised
case, measurements from the /N network nodes are available in
the training step but not necessarily for testing. This supervised
scenario covers many different applications; a case in point is a
weather station network wherein the temperature sensors are
working during a period of time, but then, suddenly, some
of them are shut down due to malfunctioning or maintenance
cost reduction. In the semi-supervised case, on the other hand,
only some nodes appear in the training set and can, therefore,
be used to compute gradients. Again, the semi-supervised
scenario also covers many practical applications; for instance,
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when a sensor network is deployed with a limited number of
nodes to reduce the related costs, but a finer spatial resolution
is desirable, which can be obtained by a virtual denser sensor
network.

Considering these two basic scenarios, we can conceive four
specific types of applications:

A. Supervised Application

Input GS is composed of M < N nodes but labels of
all N nodes are used to compute the loss function in (14).
As mentioned before, this learning model can be applied to
situations in which all the IV sensors are temporarily activated
and, afterwards, N — M sensors are turned off.

B. Semi-supervised Application

Both input GS and labels are composed of M < N. Thus,
only the M in-sample are available to train the model using
the loss function in (15). In this application, it is desired to
predict the state of a static network with N nodes, considering
that only M < N sensors are deployed.

C. Noise-corrupted Application

Input GS is composed of all the N nodes with signals
corrupted by uncorrelated additive noise, and the labels are the
entire ground-truth GS. This application allows working with
the proposed learning model when the sensors’ measurements
are not accurate. Given an JF-bandlimited GS with additive
noise x = Xp + 7, with i as in equation (6), a smoothed
version of the GS can be obtained by x;, = U, fUfo.
Therefore, this application aims to exploit the denoising ability
of the lower branch of the proposed learning model while
forecasting the input GS. Note that, in this case, only the
denoising capacity of the proposed model is evaluated, hence
no sampling is performed over the input data.

D. Missing-value Application

Input GS is composed of all the N nodes but, at each
time instant, a fraction of the N values measured by the
sensor network are randomly chosen to be dropped (missing
value). It is worth highlighting that this application is different
from the (pure) supervised application in Section IV-A. In the
supervised application, the set of known nodes, S, is fixed
over time, whereas the application of missing values considers
different sets of known signal values at each time instant
t. In other words, we have a supervised application with a
time-dependent sampling set S®. The labels are the entire
ground-truth GS. This setup evaluates the performance of the
proposed SG-GRU when some of the sensors’ measurements
are missing, which could be due to transmission failures in a
wireless network.

V. NUMERICAL EXPERIMENTS

In this section, we assess the performance of the pro-
posed SG-GRU scheme in two real datasets. The simulation
scenarios are instances of the four applications described in
Section IV.

A. Dataset Description

The proposed learning model was evaluated on two distinct
multivariate time-series datasets: temperatures provided by the
Global Surface Summary of the Day Dataset (GSOD) [86],
and the Seattle Inductive Loop Detector Dataset (Seat-
tleLoop) [40].

1) Global Surface Summary of the Day Dataset: The
GSOD dataset consists in daily temperature measurements
in °C from 2007 to 2013, totalling 2,557 snapshots, in 430
weather stations distributed in the United States.” The source
provides more weather stations but only 430 worked fully from
2007 until 2013. These stations are spatially represented by a
10-nearest-neighbor graph with nonzero edge weights given
by [87]:

e (dnmthi,)
Apm = 2 2 2 2 5’ (18)
\/ZjENn e—(dnj+hnj)\/zjeNm o= (@2, +h2,))

in which N, is the set of neighboring nodes connected to the
node indexed by n, whereas d,,,, and h,,, are, respectively,
the geodesic distance and the altitude difference between
weather stations indexed by n and m. The adjacency matrix
is symmetric and the diagonal elements are set to zero.

2) Seattle Inductive Loop Detector Dataset: The Seat-
tleLoop dataset contains traffic-state data collected from in-
ductive loop detectors deployed on four connected freeways
in the Greater Seattle area. The 323 sensor stations measure
the average speed, in miles/hour, during the entire year of
2015 in a 5-minute interval, providing 105, 120 timesteps. This
dataset is thus much larger than GSOD. The graph adjacency
matrix provided by the source [40] is binary and the GS
snapshots are barely bandlimited with respect to the graph
built on this adjacency matrix. To build a network model in
which the SeattleLoop time series is (F, €)-bandlimited with a
reasonably small €, the nonzero entries of the binary adjacency
matrix were replaced by the radial-basis function

%5 —%m ||2

Anm =e 10 ) (19)

where x,, and x,, are time series, containing 1000 time-steps,
corresponding to nodes v,, and v,,, respectively.

B. Choice of Frequency Set F

The larger the set F the more information about the input
signal is considered in the model. However, the interpolation
using (5) is admissible only if |F| = K < M [67]. Moreover,
if K increases, the singular values of Ug 7 tend to decrease,
leading to an unstable interpolation. Since the GSs considered
in this paper are approximately bandlimited, using K close
to M accumulates error during the training of the network.
Based on the validation loss in (15), K was set to %

When all nodes are available for training, that is, in the
applications described in Sections IV-A, IV-C, and IV-D, F
is chosen as the K Laplacian eigenvalues corresponding to
the dominant frequency components (the ones with highest
energy) of signals measured at the first 100 days. In the semi-
supervised application, on the other hand, the spectral content

7Weather stations in the Alaska and in Hawai were not considered.
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of the entire GS is unknown. Since the GSs considered in
this paper are usually smooth, in the sense that most of their
frequency content is supported on the indices associated with
the smaller Laplacian eigenvalues, the set F was chosen as
the K smallest eigenvalues )\, in this scenario. The set F
used in the application described in Section IV-B is, therefore,
different from the set F used in the scenarios related to the
applications of Sections IV-A, IV-C, and IV-D.

C. Competing Learning Techniques

Recently, many DL-based models were shown to outperform
classical methods in the task of predicting ST data. Nonethe-
less, to the best of our knowledge, only [50] addresses the
problem of predicting ST data by training a learning model
with M < N nodes, with the aim of reducing the training time
duration. Therefore, the performance of our proposed model is
here compared with DL-based models from the literature that
do not actually handle sampled input GSs. Thus, we adapted
the DL-based models from the literature by combining them
with an interpolation strategy, such as k-NN and the GSP-
based interpolator ®s. In this context, the interpolation can be
performed either: (i) before running the forecasting technique,
so that the input of the competing DL-based model will be
the entire GS; or (ii) after running the forecasting technique,
so that the input of the competing DL-based model will be a
sampled GS, thus requiring fewer learnable parameters.

We use as benchmark some LSTM-based NNs, which were
shown to perform well in the strict forecasting task (i.e., time-
domain prediction) on the SeattleLoop dataset in comparison
with other baseline methods, such as ARIMA and SVR [31]. In
addition, we also consider the ST graph convolution network
(STGCN) proposed in [32] as benchmark. The graph convolu-
tional deep learning architecture (GCDLA) [50], which allows
the unknown nodes to be labeled in the test phase, serves as
an additional benchmark for the semi-supervised application.
In summary, the competing techniques (adapted to deal with
sampled GSs) are:

(1) LSTM: simple LSTM cell;

(ii) C1D-LSTM: a 1D convolutional layer followed by an
LSTM cell;

(iii)) SGC-LSTM: the SGC from [83] followed by an LSTM;

(iv) TGC-LSTM: a traffic graph convolution based on the
adjacency matrix combined with LSTM [31];%

(v) STGCN: a combination of the graph convolution
from [22] with a gated-temporal convolution [32]. Hyper-
parameters were set as in [32] since they lead to smaller
MSE in the validation set (filter sizes were evaluated from
the set {16, 32, 64});’

(vi) Cheb-LSTM: an LSTM with Chebyshev polynomial fil-
ters of degree 5 in the place of matrix-vector multiplica-
tions of the LSTM equations [85, model 2];

(vii) GCDLA [50]: LSTM followed by 3 blocks of convo-
lutional layers with polynomial of degree 2 and rough
layers.'”

8Code from https://github.com/zhiyongc/Graph_Convolutional_LSTM .
Code from https://github.com/ Veritas Yin/Project_Orion.
10The graph convolutions were implemented with pytorch geometric.
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As mentioned before, except for (vii), the above competing
techniques do not tackle joint forecasting and interpolation
tasks. Thus, they were combined with an interpolation tech-
nique. The output of methods (i)-(vi) were interpolated by ®s,
whereas a 1-hop neighborhood interpolation was applied only
before the method (v), that is, each unknown value xfl was
set as
1
[l‘;]unknown = Tar Jﬁin . (20)
L2,

This interpolation was combined with the STGCN in order to
evaluate a non-GSP spatial prediction. The TGC-LSTM was
only applied to the SeattleLoop dataset since it uses a free-
flow reachability matrix, being specifically designed for traffic
networks. The learning models (vi) and (vii) were evaluated
only in the semi-supervised application.

D. Experimental Setup

In the applications described in Sections IV-A and IV-B,
75%, 50%, and 25% from the N nodes in V were selected
to compose the set S using the greedy method in [67], with
the set JFys corresponding to the first M smallest Laplacian
eigenvalues. The subscript ‘ds’ highlights that this is the actual
frequency support of the dataset. This support might differ
from the frequency support adopted by the learning model
in Section V-B. This choice of Fys relies on the smoothness
of the underlying GS, that is, nodes near to each other are
assigned with similar values. The same sampling sets were
used for both supervised and semi-supervised training. All the
experiments were conducted with a time window of length 7 =
10. The prediction length was p = 1 and p = 3 samples ahead
for the GSOD dataset, that is, 1 day and 3 days, respectively,
and p = 1 and p = 6 samples to SeattleLoop, that is 5 and 30
minutes, respectively.

The datasets were split into: 70% for training, 20% for
validation, and 10% for test. Batch size was set to T}, = 40 and
the learning rate was 10~%, with step decay rate of 0.5 after
every 10 epochs. Training was stopped after 100 epochs or 5
non-improving validation loss epochs. The input of the model
was normalized by the maximum value in the training set. The
model was trained by the RMSprop [88] with PyTorch default
parameters [89]. The network was implemented in PyTorch
1.4.0 and experiments were conducted on a single NVIDIA
GeForce GTX 1080.

The prediction performance was evaluated by the root mean
square error (RMSE) and the mean absolute error (MAE). The
error metrics MAE and RMSE have the same units as the data
of interest, but RMSE is more sensitive to large errors, whereas
MAE tends to treat more uniformly the prediction errors. In
the semi-supervised application and in the noisy setup, the
mean absolute percentage error (MAPE) was also evaluated.

E. Results: Supervised Application

TABLE III and TABLE IV show the MAE and RMSE in
the supervised application. The proposed model outperformed
all competitors in virtually all scenarios. When the sample
size decreases, the performance gap increases compared to the
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TABLE III: MAE and RMSE of supervised prediction applied
to the GSOD dataset

| M=07N | M=050N | M=0.25N
| Methods MAE RMSE MAE RMSE MAE RMSE
SG-GRU 1.66 2.21 1.73 2.28 1.74 2.31
LSTM 2.37 3.11 2.35 3.09 2.52 331
p=1| CID-LSTM 232 3.02 2.40 3.15 2.66 3.49
SGC-LSTM  3.15 4.15 3.20 4.25 3.23 4.28
STGCN 2.20 2.98 2.44 3.29 2.40 322

TABLE IV: MAE and RMSE of supervised prediction applied
to the SeattleLoop dataset

| M=075N | M=050N | M=0.25N
| Methods MAE RMSE MAE RMSE MAE RMSE
SGGRU 279 4.16 3.02 4.59 3.38 5.40
LSTM 3.15 479 3.64 5.59 445 7.03
| ci-LsT™M 325 495 370 5.70 449 7.08
P=1 SGC-LSTM  3.59 5.57 3.97 6.14 4.60 7.26
TGC-LSTM  3.03 4.59 3.54 5.45 440 6.98
STGCN 279 432 3.11 4.82 3.65 6.10

benchmarks. On the GSOD dataset, the SG-GRU performed
much better than the other strategies. We can see that, as the
temperature GS is approximately (F,e)-bandlimited with small
€, the SG-GRU successfully captures spatial correlations by
predicting the GSs’ frequency content.

F. Results: Semi-supervised Application

The loss function in (15) was used for training the SG-
GRU and the LSTM-based methods. For the STGCN, the
interpolation of the target GS in (16) was replaced by the 1-
hop interpolation. TABLE V and TABLE VI show the result of
the SG-GRU and the competing approaches on the SeattleLoop
and GSOD datasets, respectively. Fig. 3b shows the outputs
of the SG-GRU and LSTM methods, in the second semester
of 2013 over the ground-truth signal, for a weather station
out of the sampling set, highlighted in Fig. 3a, considering
a situation with 50% of known nodes. The SG-GRU outper-
formed the competing methods in the GSOD dataset. Since
temperature GSs are highly smooth in the graph domain, the
GSP interpolation, which is based on the assumption that
the GS is bandlimited, provides good reconstruction. The
GSs in the SeattleLoop dataset, on the other hand, are not
as smooth as the GSs in the GSOD dataset, leading to a
larger reconstruction error. Even with this limitation on the
prior smoothness assumption, the SG-GRU outperformed the
STGCN combined with 1-hop interpolation and the TGC-
LSTM combined with GSP interpolation when the sampling
set size is 25% or 50% of the total number of nodes. It is
worth mentioning that the STGCN and the TGC-LSTM are
learning models designed specifically for traffic forecasting.
When the horizon of prediction is 30 minutes, then the SG-
GRU achieved the smallest errors among all tested methods.
This could be due to simultaneous ST features extraction by
the SGRU module. Fig. 4 depicts the predicted speed by SG-
GRU, STGCN, and TGC-LSTM for an unknown sensor with
p=1, M = 0.50N, and during the day 11/24/2015. As can
be seen, the SG-GRU was able to better fit many points in the
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Fig. 3: (a) Graph of sensors in the GSOD dataset. The known
(50%) and unknown (50%) nodes are colored by blue and
gray, respectively. The red node, which does belong to S,
indicates the weather station whose temperature predictions
are shown in (b); and (b) output of the SG-GRU and the LSTM
over the ground-truth temperature in the 2" semester of 2013
measured by the node highlighted in red in (a).

curve. It is worth mentioning that, despite the STGCN having
poorly fitted the curve in Fig. 4, it actually achieved higher
accuracy on the known samples.

G. Results: Noise-corrupted Application

In many real situations, sensors’ measurements can be con-
taminated with noise, which may worsen forecasting accuracy.
Therefore, to deal with these situations, it is important to
develop robust algorithms. Consider a GS x with standard
deviation o, and a measurement Gaussian noise, uncorrelated
across both time and graph-domain, 17 with standard deviation
oy. The noisy GS is x = x + n if the whole network is
measured or xg = Wgx+mn, if only the subset S is measured.

To evaluate the robustness of the proposed learning model,
both SeattleLoop and GSOD datasets were corrupted by ad-
ditive Gaussian noise with zero mean and standard deviation
(std) 0, = 0.50, and o, = 0.10,, where o, is the std of
the entire dataset: 10°C for GSOD dataset and 12.74 miles/h
for SeattleLoop dataset. In this experiment, nodes were not
sampled and only the capability of handling noisy input was
evaluated. TABLE VII and TABLE VIII show MAE, RMSE,
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TABLE V: MAE and RMSE of semi-supervised prediction applied to the GSOD dataset

| M = 0.75N | M = 0.50N | M = 0.25N
| Methods MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SG-GRU 1.77 2.38 891 1.88 2.53 9.50 2.06 2.76  10.7
LSTM 2.35 3.03 11.1 241 3.16 12.0 272 3.54 13.8
p=1| CID-LSTM 1.83 2.44 10.2 2.00 2.65 113 2.24 2,97 134
SGC-LSTM 275 3.66 16.6 2.84 3.76 1810 301 3.97 212
STGCN 234 3.20 133 375 5.02 136 6.92 8.65 146
STGCN-GSP 241 3.13 13.8 242 322 14.4 2.53 3.55 146
GCDLA 3.29 4.21 15.1 343 4.66 175 5.82 7.17 23.0
Cheb-LSTM 276 3.68 158 3.34 4.45 16.9 3.62 5.12 385
SG-GRU 2.84 3.76 153 290 3.85 153 299 3.94 15.9
LSTM 2.88 3.83 16.0 2.95 3.92 172 3.04 4.03 172
p=3| CID-LSTM 2.88 3.84 158 2.96 3.92 16.3 3.05 4.03 17.1
SGC-LSTM 3.12 4.15 175 3.16 4.20 185 328 4.36 209
STGCN 3.33 4.40 1897 428 5.53 19.7 6.95 8.48 20.7
STGCN-GSP  3.58 474 202 374 4.79 18.7 430 5.35 192
GCDLA 3.54 4.77 20.0 4.07 5.45 224 6.09 7.62 264
Cheb-LSTM  3.17 4.24 182 341 4.62 185 344 4.67 19.0

TABLE VI: MAE and RMSE of semi-supervised approaches applied to the SeattleLoop dataset

\ M = 0.75N | M = 0.50N | M = 0.25N

| Methods MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
SG-GRU 298  4.60 780  3.583 5.55 9.81 4.50 7.28 14.1
LSTM 3.06 4.73 8.50 3.61 5.66 10.5 4.56 7.34 14.6
_;| CID-LST™M 3.09 4.77 8.79 3.67 5.74 10.6 4.61 74 147
=1 sce-Lst™ 3.46 5.38 9.92 3.86 5.99 115 4.65 7.44 15.1
TGC-LSTM  3.01 4.61 9.23 364  5.55 113 4.82 7.5 15.1
STGCN 2.88  4.65 7.45 372 6.46 11.2 5.67 10.3 18.5
STGCN-GSP 301  4.60  7.45 347 5.50 9.64 4.53 7.28 14.1
GCDLA 373 5.86 11.0 4.60 7.61 153 5.76 9.18 207
Cheb-LSTM 331 5.09 9.10 372 5.77 10.7 3.87 7.58 15.6
SG-GRU 3.87 6.18 11.2 4.18 6.61 12.6 4.88 7.77  15.7
LSTM 3.96 6.34 118 4.31 6.81 12.8 4.98 7.94 16.1
_¢| CID-LSTM 3.96 6.37 119 43 6.83 12.9 5.02 7.97 16.1
P=>| sGC-LST™ 4.12 6.63 11.9 4.44 6.98 14.0 5.03 7.98 17.0
TGC-LSTM 491 7.89 112 5.17 8.23 137 8.29 125 16.6
STGCN 4.54 6.82 1254 456 7.90 173 6.11 10.8 252
STGCN-GSP  3.89 6.33 118 4.25 6.77 12,6 4.99 7.93 163
GCDLA 4.39 6.62 10.9 5.28 8.16 158 6.52 9.85 17.0
Cheb-LSTM 3.9 6.39 11.9 4.35 6.90 13.3 5.29 8.34 179

TABLE VII: MAE, RMSE and MAPE (%) of forecasting

and MAPE!! of the forecasting models respectively evaluated ; ’ ° -
applied to the GSOD with noise corruption

on 100 and 30 simulations of each of these noisy scenarios.
In the GSOD dataset, the proposed model achieved reason- |
able error levels in the presence of noisy measurements: for

op = 0.10, | op = 0.50,

) i . | Methods MAE RMSE MAPE MAE RMSE MAPE
instance, MAE and RMSE increased 9% and 7% in compar-
. . . . X SG-GRU 1.81 2.36 7.70 2.01 2.61 8.52
ison with the supervised application with M = 0.75/N when LSTM 1.98 259 8.55 211 275 970
the additive noise has std o,, = 0.10,. Many GS denoising ~ ,-;| CID-LSTM 190 249 807 203~ 265 865
. . . SGC-LSTM 294  3.89 139 295 3091 13.9
approaches are based on attenuating high frequencies of the STGCN 2.19 2.94 103 266 348 123
GS [90], [91]. The SGRU module of the proposed model SG-GRU 2.85 8.79 13.41 2.89 5.83 185
promotes the smoothness of the predicted GS similarly: it runs LST™M 288 383 136 293 388 138
dicti leorith icted sub £ th h _3| CID-LsSTM 286 338 134 2091 3.85 13.6
a predictive algorithm over a restricted subset of the grap P3| SGCASTM 318 421 152 316 42 159
frequency content, F, and thereafter computes the inverse GFT STGCN 3.17 4.23 15.6 321 425 157

considering only this restricted subset.
In the SeattleLoop dataset, the MAE and RMSE evaluated

on the proposed model increased 4% and 2%, respectively, in
comparison with the supervised application with M = 0.75N
when the additive noise has std o, = 0.10,, This is a highly
acceptable result, even though the STGCN achieved lower
errors. The architecture of the STGCN is able to handle noisy
data, especially when the horizon of prediction is small. It is
also worth mentioning that the GSOD dataset is much smaller

" Temperatures in the GSOD dataset were converted to Fahrenheit before
computing MAPE to avoid division by zero.

than the SeattleLoop dataset, which could also explain why
the SG-GRU performs better in the GSOD dataset.

H. Results: Missing-value Application

Another common problem in real time-series datasets are
missing values, which could occur due to sensor’s malfunc-
tioning or failure in transmission. To evaluate the performance
of the SG-GRU in this situation, 10% of both SeattleLoop
and GSOD datasets were randomly removed (missing values).
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TABLE IX: MAE, RMSE and MAPE (%) of forecasting

70
WW Ww\ applied to the GSOD dataset with 10% of missing values

60 v
25 x | P= | L=
>~ H
8 4 | Methods MAE RMSE MAPE MAE RMSE MAPE
E40 SG-GRU 1.75 2.3 7.53 2.87 3.77 13.1
o LSTM 256 341 123 294 393 14.1
g 30 . ! CID-LSTM 253 336 1.9 292 39 13.9
& A , —— GROUND-TRUTH - SGC-LSTM 351 481 202 322 434 16.8

oF |l
2 i [ - SG-GRU STGCN 210 287 997 322 431 15.2
i ——- TGC-LSTM
10 } } | : 1
B0 B eH B Lo sw wn zn wwn ABLE X: MAE, RMSE and MAPE (%) of forecasting

Time (minutes)

~
o

applied to the SeattleLoop dataset with 10% of missing values

- | p=1 I p=6
60 4 i
Pl ! | Methods MAE RMSE MAPE MAE RMSE MAPE
< 50 ) '- SG-GRU 310  3.85 460  6.17 149  23.7
8 LSTM 337 407 508 649 196 273
E 10 CID-LSTM 344 406 523 649 196 273
= SGC-LSTM 401 458 634 73l 163 351
g TGC-LSTM  3.15 3091 470 626 135 2438
30 | —
& , GROUND-TRUTH STGCN 2.60 391 3.95 626  11.8 249
]
20 e SG-GRU . o
I —— STGCN TABLE XI: Average computational time in seconds
10 | | ‘ ‘
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Time (minutes)

Fig. 4: Predicted signal of the sensor i005es16920 using a
subset with 50% of the nodes for the SG-GRU, TGC-LSTM,
and STGCN. The evaluated sensor was absent in the sampling
set S.

TABLE VIII: MAE, RMSE and MAPE (%) of forecasting
applied to the SeattleLoop with noise corruption

| o, =0.10, | op = 0.50,

‘ Methods MAE RMSE MAPE MAE RMSE MAPE
SG-GRU 291 4.27 13.7 3.13 4.66 16.1
LST™M 3.21 4.85 18.2 3.45 5.20 19.4

-1 CID-LSTM 3.30 5.05 19.4 3.48 5.30 20.5
P=1 SGC-LST™M 3.96 6.28 28.3 4.07 6.44 29.9
TGC-LSTM  2.88 4.24 13.0 3.19 4.74 14.2
STGCN 2.63 3.85 11.3 3.08 4.39 12.9
SG-GRU 3.74 6.02 26.3 3.84 6.19 26.1
LST™M 3.99 6.35 28.6 4.07 6.47 27.1
-6 C1D-LSTM 3.99 6.39 28.6 4.07 6.49 28.1
P=01 SGC-LSTM 456 7.27 34.6 4.58 7.29 34.7
TGC-LSTM  3.79 6.09 26.1 3.92 6.28 25.3
STGCN 3.77 6.18 26.4 4.00 6.33 26.0

Before applying the forecasting methods, the missing values
were interpolated by the 1-hop interpolation in (20), thus, like
in the noise-corrupted application, the input GS is not sampled.
TABLE IX and TABLE X show the numerical results of this
scenario considering two forecasting horizons on the GSOD
and SeattleLoop datasets, respectively, each one evaluated on
100 and 30 simulations. The forecasting accuracy decreases
when there are missing values, as expected. For instance, in
the GSOD dataset, MAE and RMSE increased 6% and 4% in
comparison with the supervised application with M = 0.75N.
In the SeattleLoop dataset, MAE increases about 10% whereas
the RMSE decreases about 8%. The GFT in the proposed
model (and also in combination with the LSTM-based models)
tends to smooth the output signal, reducing large deviations

SeattleLoop GSOD

Methods Training Test Training Test
SG-GRU 414.68 4.89 11.18 0.01
LSTM 1134.0 5.63 30.74 0.01
C1D-LSTM 1319.0 5.90 36.90 0.03
SGC-LSTM 2770.3 6.10 39.89 0.04
TGC-LSTM 1027.1 5.48 - -

STGCN 725.58 12.6 83.92 0.12
GCDLA 1489.30 2.52 23.5 0.09
Cheb-LSTM 1099.5 20.7 34.68 0.51

and consequently the RMSE. Nonetheless, it slightly increases
the forecasting error across many nodes, leading to the increase
in MAE.

1. Computational Cost and Efficiency

In the SeattleLoop Dataset, the epoch duration of SG-
GRU was, on average, 8.5 s, whereas the more complex
approaches, TGC-LSTM and STGCN, took around 40 s and
84 s per epoch, respectively. In the GSOD dataset, which is
much shorter than the SeattleLoop, the average epoch duration
of SG-GRU, LSTM, and STGCN were 0.20 s, 0.25 s, and
2.5 s, respectively. TABLE XI shows the average training
time, including pre-processing and data preparation, as well
as test phases for the 3 semi-supervised scenarios applied on
the SeattleLoop and GSOD datasets, with p = 1. The SG-
GRU required more epochs to converge than STGCN, but it
still trains faster than the competing approaches.

J. Final Remarks on the Results

The consistently better results obtained by the SG-GRU
for the GSOD dataset stem from the smoothness of the
temperature GS with respect to the graph domain; SG-GRU
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relies on the assumption of bandlimited GSs. Therefore, SG-
GRU is a promising approach to predict spatially smooth GSs.
It is worth mentioning that the choice of the adjacency matrix
is fundamental for a good performance, since it eventually
defines the smoothness of the GSs. In the SeattleLoop dataset,
which is not really smooth, the SG-GRU outperformed both
the STGCN and the LSTM-based approaches when the sample
size was small and the prediction time horizon was 30 minutes,
thus indicating that the SG-GRU can capture ST dependencies
by taking the network frequency content into account. More-
over, SG-GRU has low computational cost and can be boosted
with more recurrent or fully connected layers, when sufficient
computational resources are available.

VI. CONCLUSION

This work presented a new deep learning technique for
jointly forecasting and interpolating network signals repre-
sented by graph signals. The proposed learning model embeds
GSP tools in its basic learning-from-data unit (SG-GRU cell),
thus merging model-based and deep learning approaches in
a successful manner. Indeed, the proposal is able to capture
spatiotemporal correlations when the input signal comprises
just a small sample of the entire network. Additionally, the
technique allows reliable predictions when input data is noisy
or some values are missing by enforcing smoothness on the
output signals. As future works, we envisage the use of the
proposed SG-GRU as part of an anomaly detector in network
signals, in which the anomalous sensors’ measurements are
characterized by large deviations from the neighboring sensors.
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