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Abstract

This work proposes a normalized least-mean-squares (NLMS) algorithm for on-
line estimation of bandlimited graph signals (GS) using a reduced number of
noisy measurements. As in the classical adaptive filtering framework, the result-
ing GS estimation technique converges faster than the least-mean-squares (LMS)
algorithm while being less complex than the recursive least-squares (RLS) algo-
rithm, both recently recast as adaptive estimation strategies for the GS frame-
work. Detailed steady-state mean-squared error and deviation analyses are pro-
vided for the proposed NLMS algorithm, and are also employed to complement
previous analyses on the LMS and RLS algorithms. Additionally, two different
time-domain data-selective (DS) strategies are proposed to reduce the over-
all computational complexity by only performing updates when the input signal
brings enough innovation. The parameter setting of the algorithms is performed
based on the analysis of these DS strategies, and closed formulas are derived for
an accurate evaluation of the update probability when using different adaptive
algorithms. The theoretical results predicted in this work are corroborated with
high accuracy by numerical simulations.
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1. Introduction

Although traditional signal processing provides a useful framework for han-
dling data defined on regular domains, such as time series and image grids,
some modern problems are better represented by more general structures. For
instance, irregular datasets arise from popular research fields, such as Internet
of things and big data applications, and usually require performing processing
tasks on their irregular domains [I]-[2]. In order to model these data points
and their complex interactions, the signal processing community has recently
turned its attention to a general mathematical structure called graph, and has
been extending classical results to this irregular-structure domain, giving rise
to the so-called graph signal processing (GSP) [2]-[21].

GSP involves the definition of a graph signal (GS) along with some an-
alytical tools, such as its frequency-domain representation [3]-[5], bandlimited
properties, as well as sampling [8]-[T1] and reconstruction ideas [12]-[21]. In par-
ticular, the online reconstruction method proposed in [14] suggests the use of a
procedure based on the least-mean-squares (LMS) algorithm [24]-[27] for a ban-
dlimited GS estimation context, which represents the first attempt to merge the
GSP field with the well-established adaptive filtering area [26]-[27]. This blend-
ing work is further extended in [15]-[20], where the authors present centralized
and distributed GS reconstruction strategies, consolidating the use of adaptive
methods in GSP. Besides the LMS algorithm, centralized and distributed ver-
sions of the recursive least-squares (RLS) algorithm [26]-[28] are also proposed
for the same reconstruction scenarios.

The appeal for using adaptive filtering ideas in the GS estimation problem
arises from the expected benefits of enabling online reconstruction and tracking
time-varying graph signals in noisy environments. Although traditional inter-
polation methods like Kriging [29] can be used for handling signal inference in
irregular domains with static reference values, adaptive algorithms seem more
suitable for dealing with dynamic GSs due to their reduced complexity and
benefit of online estimation. Moreover, recent papers extend the adaptive fil-
tering concepts to cover time-varying sampling scenarios [17, 18], highlighting
the flexibility and potential of the adaptive approach when employed in the GS
estimation context.

Like their classical counterparts [26]-[27], the LMS algorithm from [14] is
much slower than the centralized RLS in [I7]-[I8], as verified in [2I] for both
static and time-varying reference GS. The RLS main drawback is its large com-
putational complexity, which imposes a practical problem in applications with
many nodes. Aiming at proposing an adaptive technique for GS estimation
that has faster convergence speed than the LMS, while inducing a lower com-
putational burden than the RLS, we propose a normalized least-mean-squares
(NLMS) algorithm, which resembles its classical version [26]-[27], [30]-[31] and
provides a trade-off between the GSP LMS and RLS algorithms. In particular,
when considering the scenario with fixed and known sampling nodes, one ob-
serves that the proposed implementation of the NLMS algorithm results in a
procedure that converges much faster than the LMS in [I4], but with the very



same complexity.

Besides its derivation, this work provides a detailed theoretical analysis on
the steady-state behavior of the proposed NLMS algorithm, presenting a range
of values for the underlying convergence factor that guarantee the algorithm
stability and ability to provide asymptotically unbiased GS estimates, as well
as closed-form expressions for estimating the corresponding mean-squared error
(MSE) and mean-squared deviation (MSD). Moreover, based on the NLMS
study, we employ the same methodology and further complement the LMS and
RLS analyses in [I8] by obtaining more general steady-state expressions for the
related figures of merit (FoMs) such as the MSE and MSD.

An important concern in several practical applications is power consumption.
As some classical adaptive filtering algorithms implement the data-selection idea
in order to obtain power savings [32]-[34], we propose tailoring this idea to the
GSP context. Although some data-selection adaptive algorithm families like the
set-membership [32]-[33] perform more complex computations involving the es-
timation of a solution set, in this first approach we propose the use of a simpler
family called data-selective (DS) [34)-[36], which involves a more direct imple-
mentation based on a point update. Since the GS estimation problem presents
some differences in comparison to the classical adaptive filtering problem, the
novelty test at each algorithm iteration uses an error vector instead of a scalar
value as in [34]. Thus, we propose two novelty tests: one based on the individual
error component values, namely the component-wise error constraint strategy,
and another that uses the vector squared /o-norm as a reference, the so-called
{5-norm error constraint strategy. For both DS strategies we show how to define
constraint parameters that allow an accurate estimate of the update probability
when using not only the proposed GSP NLMS, but also the GSP LMS and RLS
algorithms [18].

This paper is organized as follows: Section [2| presents some basic GSP con-
cepts and highlights some aspects of classical adaptive filtering. Section[3|blends
these two different areas by discussing the use of adaptive procedures, like the
LMS and RLS algorithms, for the online reconstruction of bandlimited GS. The
proposals of this work start to be detailed in Section [4] with the derivation and
analysis of the NLMS algorithm for the GS context. In Section [5| we comple-
ment the analysis in [I8] and provide important steady-state results about the
GSP LMS and RLS algorithms. Section [6] describes two proposals of DS strate-
gies with respect to time for GSP NLMS, LMS, and RLS algorithms; constraint
parameters related to these DS strategies are also proposed based on the corre-
sponding estimation of steady-state error variance, allowing accurate estimates
of the underlying update probability of each algorithm. Section[7]describes some
numerical simulations using a bandlimited approximation [21] of the Brazilian
temperature dataset in [22]-[23] to validate the theoretical predictions from Sec-
tions Additionally, Section [7] also compares the GSP adaptive algorithms’
tracking performance when handling real-world data taken from the U.S. climate
normals dataset [37]. At last, some conclusions are drawn in Section
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Figure 1: GS representation of 1961-1990 monthly average temperatures (degree Celsius) from
Brazilian weather stations [21]-[23].

2. Background on GSP and Adaptive Filtering

2.1. Graph Signal Processing

A graph structure G = (V,€) is made up of N nodes or vertices V =
{v1,va,...,un} linked by a set of edges € = {,,v,, }. For describing the connec-
tion strength between nodes v,, and v,, € V, each edge v,v,, € £ is associated
with a weight a,,,, € R, which can be understood as a proximity or similarity
metric. The N x N matrix formed by elements a,,, in its nt row and m'™® col-
umn is called the adjacency matrix A and stores information about the graph
connections in a compact representation, being widely used in GSP approaches
[4]-[6]. Although some problems might require the use of directed graphs (di-
graphs) for which an;m # amn for some n,m € N = {1,2,..., N}, this work
only considers undirected graph structures, from which one concludes that A
is symmetric. Additionally, an alternative representation for undirected graph
structures is given by the Laplacian matrix L € RV*N defined as L =K — A,
where K is a diagonal matrix with diagonal entries k,, = E%:I A [6].

Considering a graph G = (V,€) with N vertices, the graph signal (GS)
x :V — R defined on the nodes of G can be represented as a vector x € RV,
whose n*® entry, x,, contains the function value at vertex v, € V B]. An
example of a practical GS representation is displayed in Figure [I} where the
graph nodes indicate the geographical location of Brazilian weather stations
and the color of each vertex v,, represents its average monthly temperature z,,
according to the color scale [21]-[23].

Motivated by the classical signal processing framework, one can define the
graph Fourier transform (GFT) of a GS x € R¥ as its projection onto a set of
orthonormal vectors {u,,} C RY, where n € /. Those basis vectors are usually
chosen as the orthonormal eigenvectors of either the adjacency matrix A [4]-[5]
or the Laplacian matrix L [3], so that the information inherent to the graph
structure is naturally embedded in the resulting frequency-domain representa-
tion. As we only consider undirected graphs here, the spectral decomposition of



L (or A) assumes the form UAUT, where A € RV*¥ is the diagonal eigenvalue
matrix and U € RV*Y is the orthonormal eigenvector matrix formed by {u,}.
Thus, the GFT of a GS x is given by [3]-[4]

s = UTx, (1)

and for recovering x from its frequency-domain representation s, one defines the
inverse graph Fourier transform (IGFT) as

x = Us. (2)

A GS x, € RY is bandlimited or spectrally sparse (ssparse) when its frequency-
domain representation s has zero entries. If one selects F as an index subset of
N, a GS x, is called F-ssparse if s is such that sy r is a null vector [11], i.e., the
components of s with indices in '\ F are equal to zero, where A/\ F represents
the complementary set of F with respect to N. In other words, this frequency
set or support of F is mathematically defined as F = {f € N'|sy # 0} [14].
Thus, considering that Uz € RN*IFl and s € RIZ| are, respectively, the ma-
trix whose columns are in {u,},cr and the frequency-domain representation
indexed by the elements in F, from one gets

XOZU]:S]:. (3)

In terms of sampling and reconstruction of bandlimited graph signals, some
works [10, [I9] describe these operations over a GS x, as the result of pre-
multiplying it by a sampling matrix Dg € R¥*Y and an interpolation matrix
® ¢ RY*N, Sampling is the operation of collecting only a limited number of
values from the GS, whose reading positions are determined by the sampling set
S C V. In this context, let Dg € R¥Y*N denote a diagonal matrix with entries
d,, where d, = 1if v, € § and d,, = 0 otherwise. Thus, one can write the
sampled vector xs € RY as

Xs = D5X . (4)

Considering the representation in , in order to achieve perfect reconstruc-
tion for any F-ssparse signal x,—that is x, = ®Dgsx,—, the product DsU »
must be full rank, thus requiring |S| > |F| [7, [10]. This fact indicates the im-
portance of an adequate choice for the sampling set S and its connection to the
graph structure Uz.

It is important, however, to remember that in many practical applications
the sampled signal comes from noisy measurements and the impact of a proper
selection of S is even bigger. In fact, many papers consider the use of op-
timal sampling strategies that minimize specific metrics of the reconstructed
GS [I0]-[II]. Particularly, this work employs online recovery strategies for re-
constructing the original GS from its sampled noisy version, which can be seen as
a time-varying interpolation matrix ®[k], and a few optimal sampling strategies
have already been proposed in this context [I4], [I9], even covering time-varying
probabilistic sampling [16], [18]-[19].



Hence, by taking into account the rich literature addressing sampling strate-
gies, this paper does not propose new graph sampling schemes, it simply con-
siders the existence of a possibly time-varying sampling set S[k], whose instan-
taneous node selection is not further explored. In particular, when handling
stationary scenarios, we presume that S[k] converges to a static set S in steady-
state. Moreover, we assume a previous knowledge of the graph structure and
consider that F does not change with time and is a priori known, for the sake
of simplicity. This assumption results in a constant matrix Ur.

2.2. Adaptive Signal Processing

In a supervised adaptive filter system identification configuration [27] one
has a desired signal d[k] € R, an input x[k] € RY, and the parameter vector
h, [k] € R, which is an estimate of the possibly time-varying unknown system
parameters h,[k] € RY. From this simple configuration an instantaneous error
signal is defined as .

e[k] = d[k] — x" [k]ho[K], (5)

i.e., it is the difference between the desired signal and the adaptive filter output.
Based on the instantaneous error signal e[k] in (5] it is possible to define different
error metrics and, for each one of them, an alternative adaptive algorithm is
derived following its minimization. This is the case for two particularly famous
adaptive algorithms, the LMS and the RLS, which arise from the minimization
of the mean square error via stochastic gradient and weighted least-square error,
respectively [26]-[27].

For comparing the performance of different adaptive algorithms, some com-
monly used metrics are the mean-square error (MSE) and mean-squared devia-
tion (MSD) defined as

MSE[K] = E[e?[K]] and MSD[k] = E[|[o[k] — ho[K]|I3]., (6)

in which E[g(w)] denotes the expected value of a generic function g(-) of a ran-
dom vector w with realizations denoted as w. Both MSE and MSD indicate
how far, on average, the current estimate h, [k] is from generating the desired
output and from the unknown system parameters, respectively. Additionally,
computational complexity is also a concern, since an improvement on conver-
gence speed usually comes at the cost of increasing the number of arithmetic
operations performed at each iteration.

3. Adaptive Estimation of Graph Signals

Consider the problem of estimating a bandlimited, or approximately ban-
dlimited, reference GS x,[k] € RY from a reduced set S[k] C V of noisy mea-
surements. In this context, the N-dimensional noisy reference (random) signal
is

@y (k] = xo[k] + wlk], (7)



in which wlk] is the measurement random noise, assumed to be zero mean and
with a covariance matrix E[w[k]wT[k]] = C,[k]. Since only the node signals
indexed by S[k| are acquired, the reference measurements at time instant k are
in fact D g [K].

The estimation error vector e[k] € R can be defined based on and by
considering only the acquired measurements, i.e.

elk] = D) (xuw[k] — Ursz[k]), (8)

where §x[k] € RI”| is the current frequency-domain estimate.

Although both standard and GSP adaptive scenarios are motivated by sim-
ilar ideas, the corresponding instantaneous errors in and have distinct
dimensions. Besides that, replaces the influence of the input signal in
with the graph structure represented by Uz, taken here as time invariant. Thus,
due to these slight differences, we expect the GS estimation algorithms to resem-
ble their classical counterparts, yet presenting some peculiarities. To investigate
these differences, we present the GSP LMS [I4] and RLS [I7] algorithms and es-
tablish the equivalent FoMs for evaluating the performance of adaptive methods
for GS estimation.

8.1. LMS Algorithm

Among a large number of traditional adaptive filtering methods, the LMS
algorithm [24)-[27] stands out as one of the most popular techniques due to
its simple implementation and reduced computational complexity. Based on
the theoretical Wiener filter formulation, the LMS method takes a practical
approach by replacing the minimization of the MSE in @ with the minimization
of the instantaneous squared error in to define its update equation.

In an attempt to obtain an LMS-based equivalent algorithm for the GS
reconstruction context, [I4] considers the error signal available as e[k] from
and, with a clear inspiration from the Wiener filter idea, defines a reference
convex problem as

min. E [ [ D@l - Uiz 3] . o)

in which sr represents a free optimization variable corresponding to the algo-
rithm update §x[k + 1].
Similarly to the original LMS, the GSP LMS algorithm in [I4] [I8] employs
a stochastic gradient approach to solve @D and finds an update expression for
$r[k+1]. Then, from the IGFT (2 one easily obtains a vertex-domain estimate
X,[k] for the bandlimited GS x,[k], which corresponds to the GSP LMS update
equation [14} I§]
Xo[k + 1] = Xo[k] + pr. UrUrelk], (10)

where uy, € Ry is a design parameter called convergence factor whose purpose
is to control the trade-off between increasing the convergence speed and reduc-
ing the steady-state error. An analysis about the range of uj, that guarantees
algorithm stability is presented in [I4] [I§].



In terms of traditional adaptive strategies, many LMS-based algorithms have
been proposed in order to take advantage of unexplored features of the origi-
nal method, mainly for enhancing its convergence speed. A particular LMS-
based algorithm that is worth mentioning is the normalized least-mean-squares
(NLMS) algorithm [26]-[27], which usually improves the convergence speed by
using a time-varying convergence factor. We shall extend the idea of finding
LMS-based strategies for GS estimation [I4], 20] and propose the GSP NLMS
algorithm in Section [

3.2. RLS Algorithm

An alternative approach to enhance convergence speed with respect to the
LMS algorithm is to consider a different cost function, like the weighted least-
squares (WLS) from which the original RLS algorithm is derived [26]-[27]. By
following a similar idea, the authors in [I8] propose the GSP RLS via a cen-
tralized version of the RLS method for online reconstruction of graph signals,
which results in an algorithm with faster convergence but higher computational
burden than the GSP LMS.

Instead of finding an instantaneous solution to the convex problem @D, the
GSP RLS [18] evaluates its frequency-domain update estimate §z[k + 1] by
minimizing the objective function

k
H%IFH Zﬂﬁ#HDs[Z] (xw(l] = Uf§f)||2c;1[k] + Brll5F (11)
=1

where S represents a free optimization variable, the forgetting factor Sy is in
the range 0 < g < 1, and the regularization matrix II, which is usually taken
as IT = §I with a small § > 0, is included to account for ill-conditioning in the
first iterations.

An online method for evaluating the WLS solution of employs the an-
cillary variables ®[k] € RIZIXIF1 and 4[k] € RV defined recursively as

V(K]
Y[k]
From these variables, the solution § z[k+1] of satisfies (k] §x[k+1] = ¥[k].

Since W[k] has full rank, one finds from (2]) that the estimate %X,[k + 1] for the
RLS algorithm is

Br¥[k — 1] + UrD g Cy ' (k] Dsi U,

T o (12)
Briplk — 1] + UzDgpC,, kD sir)Xuw [K] -

Ro[k + 1] = Ur® ! [k]3p[k]. (13)

In fact, it is worth mentioning that equations in are more general than
the ones in [T7]-[I8] because they allow the symmetric matrix C,,[k] to assume
non-diagonal structures. This generic case is not covered in [17]-[I8] because the
diagonal assumption actually simplifies the task of designing optimal sampling
strategies, which is one of the goals of those papers. Moreover, though the GSP



RLS algorithm in [I7]-[I8] suggests the use of and for computing the
estimate X,[k + 1], [Appendix A|shows that these expressions are equivalent to

(k] = Br¥[k— 1]+ UEDgyC, ' [FDspUr,

Xolk + 1] = %o[k] + Ur¥ ' [k]ULDgp, C,, ' [Ke[k] . 1)

In particular, by considering C[k] = C_!, S[k] = S, and the initialization
W[0] = II [I7]-[18], we rewrite ¥[k] in as

1— k
Wk] = BEIT + (U}DSCEDSU;)M . (15)
(1= Br)
Additionally, as k — oo, one has that 3% — 0. By definingM’ = (ULDsC_'DsUx)"!,
then when k increases, the GSP RLS update tends to the form (to be further
explored)

Xolk + 1] = %o[k] + (1 — Br)UrM'USDsC,  e[k]. (16)

3.3. Figures of Merit

The extension of the traditional MSE and MSD in @ to the GSP estimation
context is straightforward, being given by

MSEq k] =E{[e[k][3} and MSDc[k]=E{|| Az [k]]|3}, (17)

where AZ[k] = &o[k] — xo[k] is the difference between the current estimator
Zo[k] and the original GS x,[k], and we use the subscript G for avoiding con-
fusion with @ Moreover, due to the property U}j—U = =1, if we consider
and define

Asrlk] = sx[k] —sr[k], (18)

from we find that the MSDg is also given as
MSDg (k] = E{[|As#[K][3} - (19)

A disadvantage of using the scalar metrics in is that they potentially hide
the occurrence of large error entries in ; an alternative FoM should be defined
for estimating each component of the error vector. This more general FoM relies
on statistics of e,[k], the n'* component of e[k] in 7 and provides a more
accurate insight of the algorithm overall performance. Note that, from , ,

and , one has
enlk] = dn[k](wn[k] — ungé;:[k‘]) ) (20)

where dy,[k] € {0,1} depends on S[k], wy[k] is the n™ entry of w[k], and uj,
is the n*® row of Uz.

If one works with an asymptotically unbiased estimator $x[k] such that
E[A5x[k]] converges to the null vector in steady state, which holds true for



both GSP LMS and RLS algorithms [I§], and by recalling that the noise vector
wlk] has zero mean, then one has Ele,[k]] — 0 as k grows to infinity.

By assuming that w(k] is uncorrelated with Asz[k] and that S[k] converges
to a constant sampling set S, then taking the expected value of the squared
expression in allows one to compute the steady-state error variance

o7, = lim d[K](Efw} k] + uy, E[As K] ASF ]]u,), (21)

thus yielding, from , the following steady-state MSEq:
N
MSEG = lim MSEq[k] = Z:l ol . (22)

Based on the MSDg in (19)), one can also define

MSDg = lim MSD[k] = lim tr{ E[A3 FlK]ASE[K]] }, (23)

in which the matrix trace tr{-} operator is employed to show the dependency
of this FoM on the steady-state matrix E[Az[co]A8F[oc]]. Thus, this ma-
trix plays a central role when computing the FoMs in , , and .
In the analyses conducted in Subsection and Section 5] we first estimate
E[A55[00]AsF[oc]] for each algorithm and then evaluate its respective FoMs
according to , , and .

In particular, from the three FoMs covered in this subsection, only the MSDg
in has been previously considered in [I4) [I7) I§]. The error component
variances agn and MSEq in and , respectively, are natural extensions
of standard FoMs appearing in the adaptive filtering literature and are employed
in this work for providing a deeper understanding of the GS estimation problem.

4. NLMS Graph Signal Estimation Algorithm

In this section we propose and analyze the GSP NLMS algorithm for GS
estimation.

4.1. Algorithm Derivation

Inspired by the traditional NLMS algorithm derivation [27], we search for a
possibly time-varying factor pr, € R4 that improves the overall convergence rate
of the GSP LMS algorithm described in Subsection 3.1} However, as in the GSP
context one has to deal with an error vector e[k] instead of a scalar parameter,
we generalize this idea of a convergence factor u;, and adopt a symmetric con-
vergence matrix M € RIZIXIZI Then, from the frequency-domain update
equation becomes

é]—‘[k} + 1] = é]—‘[k‘} + MU}DS[M (Xw [k‘] — U]:é]:[k‘]) . (24)

10



Following the same reasoning for defining e[k] in 7 we can also define the
a postertor: reconstruction error vector

e[k] = Dy (xw[k] — Ursrlk +1]). (25)

In order to avoid confusion with the a posteriori error e[k], we shall call e[k] as
the a priori error.

According to equations and , the a posteriori error €[k] can be
rewritten as function of the a priori error, i.e.

e[k = Dgjyy (1 — UrMUL)eli] . (26)

Since an instantaneous estimate of how close the error vectors are to each
other is given by Aé?[k] = ||e[k]||3 — |le[k]||3, when using equation (26]) we find
that

A&[k]=e"[k]Ux(—2M + MUFD g UrM)ULe[k]. (27)

In order to select the symmetric matrix M that minimizes Aé?[k], we take
the derivative of with respect to M [38], yielding

2[(UrDgj,Ur)M — 1] ULelkle"[k]Ur =0, (28)

so that the symmetric matrix M[k] = (UzDg)Ux) ! minimizes the squared
error difference Aé?[k]. Based on this result, the frequency-domain update
expression given by

srlk+1] = 87[k] + (UrDsUr) " Urelk] (29)

should be able to yield faster convergence to its steady-state value than the GSP
LMS in 14, [1§].

As in the original NLMS algorithm [27], we also include an additional fixed
convergence factor uxy € Ry, resulting in the GSP NLMS in Algorithm [1} in
which we employ the vertex-domain update equation

o[k + 1] = Xo[k] + pinU(UrDspiyUr) ™ Uzelk] . (30)

Algorithm 1 NLMS estimation of graph signals

1: k+0

2: while (true) do

3: e[k] = DS[k] (Xw [k] — )Aco[k‘])

4: )Aco[k + 1] e )ACO[/{:] + ,LLNU]:(U;DS[;C]U]:)ilU}e[k]
5 k<« k+1

6: end

Remark: Alternatively, a different derivation of the GSP NLMS algorithm
can be obtained by solving the following constrained convex problem in the
frequency domain: to minimize the distance between the current §[k] and the

11



updated estimate §x[k + 1] (minimum disturbance principle), such that the
Fourier transform of the a posteriori error €[k] is equal to zero on the frequency
support F. Mathematically, one has

minimize ||§=[k + 1] — §7[k]||2
snimize [ [k + 1) = &[4 )

subject to UrDgpy(xw[k] — Ursz[k+1]) =0,
whose solution §£[k + 1] is given by (29).

4.2. Stability and Convergence to Unbiased Solution

As the GSP NLMS in Algorithm [I] allows one to select different normalized
convergence factors for controlling the trade-off between convergence speed and
steady-state FoM values, it is essential to determine for which range of uy
values $x[k] is guaranteed to be asymptotically unbiased. This information is
summarized, along with further results, in Proposition

Proposition 1. For time-invariant reference graph signal x,[k] = x, and noise
covariance matriz Cylk] = C,, the GSP NLMS algorithm converges to an
unbiased solution when its factor pux is selected in the range 0 < un < 2.
Additionally, by assuming that S[k] tends to a constant sampling set S, for such
px the matriz B[AS £[k| A8 [k]] converges to

Sk = E[Aé[oc] AsF[oo]] = N MUIDsC,DsUM.  (32)
— BN
Proof. See [Appendix B} O

Therefore, the ux parameter range that assures a stable behavior for the pro-
posed NLMS algorithm is more straightforward than the range predicted in [14]
for the GSP LMS algorithm, which depends on the eigenvalues of U};Dg[k] Ur.
In fact, this well defined convergence range is also an advantage of the traditional
NLMS algorithm in comparison to its LMS counterpart [26]-[27]. Furthermore,
the convergence range of the traditional NLMS algorithm agrees with the pre-
dicted interval of 0 < un < 2 for the GSP NLMS algorithm.

4.8. Computational Complexity Analysis

In order to provide a fair comparison of the computational complexity among
the GSP LMS, RLS, and NLMS algorithms, we estimate the amount of floating-
point operations (FLOPs) required to evaluate the estimate X,[k + 1] at each
iteration. As all algorithms present some common steps, we focus on the dif-
ferences among them, which consist basically in how the update of x,[k + 1] is
performed.

For the sake of comparison, we consider that the product between a T7 x Ts
matrix and a T X T3 matrix results in T} T»T3 multiplications and T} T3(7T5 — 1)
sums, or a total of T1T3(275 — 1) FLOPs. In particular, by taking two vectors
b, c € RY with one vector having at most |S| non-zero elements, as the sampled
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Table 1: Algorithms’ complexity for computing Xo[k + 1]

Algorithm  Xo[k + 1] FLOPs/iter.
LMS 71 [2081+ N) = 1] + N
RLS LIFP + IFI2@2S| + 3) + 2|F| (N|S| + |S| = 1) + | FIN
NLMS HFB+|F2QIS| +1) +2[F| (N +|S|-1) + N

error vector e[k] in , we assume that an inner product operation bTc can be
efficiently computed in |S| FLOPs. Then, the cost for computing Ure[k] is
|F|(2|S| — 1) operations. Similarly, due to the reduced complexity required by
the sampling operation Dgpyb, which is estimated as 1 FLOP, it is straight-
forward to conclude that Dsp,)Ur demands |F| FLOPs, while U}Ds[k]U]:
accounts for |F|?(2|S| — 1) operations. Likewise, when evaluating , the
product of ULDgpCy' k] by e[k] requires | F|(2]S| — 1) FLOPs. In addition,
it is assumed that the inversion of a |F| x |F| matrix like UrDgpUr adds
|F|® FLOPs per iteration via Cholesky factorization [39]. Thus, the computa-
tional complexity, in terms of FLOPs, for obtaining the estimate update when
using the GSP LMS, RLS, and NLMS adaptive algorithms is summarized in
Table [1I

One can observe in Table [If that the computational complexity required for
evaluating the GSP LMS update in is significantly smaller in comparison
to the other adaptive algorithms because it is obtained by simple matrix-vector
products. On the other hand, the computation of the RLS and NLMS expres-
sions in and , respectively, is more complex since it requires matrix-
matrix products and the inversion of a |F| X |F| matrix; yet, the proposed GSP
NLMS algorithm requires less FLOPs than the GSP RLS algorithm. Addition-
ally, it is worth mentioning that though the GSP RLS and NLMS algorithms
are more complex than the GSP LMS, when the graph signal is properly rep-
resented by a few frequency components (|F| < N), the order of complexity of
both algorithms is also dominated by a linear term in N.

A scenario of practical interest occurs when the sampling set S[k] happens to
be static and known a priori, as in the case of interpolation problems. In these
cases, the evaluation of the GSP NLMS update in is considerably simplified
by rewriting the constant matrix (UrDsUz)~! as LyLy, where Ly € RIZ1xI7]
is a lower triangular matrix obtained using the Cholesky decomposition. Then,
after defining the ancillary matrix By € RV*I7| as By = UxLy, one verifies
that the GSP NLMS update can be implemented in static sampling set scenarios,
where S[k] = S is known a priori, according to the expression

%o[k + 1] = %o[k] + uxBnBrelk] . (33)

Therefore, by considering that matrix By in is a pre-evaluated struc-
ture stored for efficient algorithm implementation, one easily concludes from
comparing to that the complexity required for the NLMS algorithm
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resembles that of the LMS method in the static sampling set scenario, being
both given by |F| [2(|S|+ N) — 1] + N FLOPs per iteration.

4.4. Steady-State FoM Analysis

By assuming that S[k] — S and C,[k ] — C,, in this subsection we de-
rive the steady-state values of the FoMs o2 , MSEg, and MSD{; discussed in

Subbectlo | when using the GSP NLMS
21]

From ([21]) and (32), and by defining 02, = E{w?2[k]}, the steady-state value

2

for of is given by

2 =d, {a + EIMUJTTDSCU,DSU fMunf}. (34)

Wn, 2

Moreover, according to , we find the MSEg, for the GSP NLMS by simply
summing o2 for all n 6 N
Finally, based on and . the MSDg is

HN

MSDg = 5 tr {MUzDsC,DsUzM} . (35)
N

4.5. Remarks

Let us get a better feeling regarding the effect of matrix M[k] by comparing
the GSP LMS and NLMS update equations. As {u,} is a basis of RV, then
there exists a[k] € RY such that e[k] = Dg)Ua[k]. Without loss of generality,
we can write U = [Ur Uz and alk] = [a%[k] a;[k]]T, where F = N\ F.
Note that ak] is the frequency-domain representation of wk] + (x,[k] — Xo[k]).
In this case, vector (X,[k] — X,[k]) is F-ssparse, which means that a=[k] has
only contributions from the measurement noise.

In the GSP LMS algorithm, the error signal e[k] is multiplied by matrix
pr,Br, = pu, UFUZ, thus yielding, in the frequency domain, the correction term

pM ! [Kloer (K] + wi[k], (36)

where wi[k] = pr (U}Ds[k]Uf) a=[k] is essentially noise after processing
As for the GSP NLMS algorithm, the error signal is multiplied by matrix
punBx k] = unUzM[k]UZ, thus yielding, again in the frequency domain, the
correction term

pnerlk] + wnlk], (37)

where wn[k] = puxMIk] (UED s Uz) az[k].
By comparing expressions and one can see that the estimation error
within the frequency support F in the NLMS has a clean and direct impact

on the correction of the previous estimate §x[k], without distortions as in the

IRoughly speaking, U;Ds[k]Uf tends to be close to 0, since U;Uf =0.
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LMS case, imposed by M~1[k]. The so-called normalization of the NLMS is
responsible for this effect, which turns out to be a key aspect for enhancing the
algorithm performance, as will be clear in Section [7}

In addition, it is noticeable that the proposed NLMS update equation in
resembles the RLS long-term expression in , thus indicating that the
inclusion of M brings about some RLS-like features to the resulting algorithm.
Particularly, when the covariance matrix is given by C,, = ¢21, with o2 > 0,
and S[k] = S, both algorithms present an equivalent performance for large k if
the NLMS convergence factor uyx and the RLS forgetting factor g follow the
relation

pn=1-Pr. (38)

Differently from its traditional counterpart, whose normalization term is usu-
ally time-varying since it depends on the system input signal, in static sampling
set scenarios the GSP NLMS algorithm relies on a fixed normalization term M
for a constant graph structure, yielding an update expression that requires the
same computational complexity as the GSP LMS algorithm. Besides, the GSP
NLMS has a strong practical appeal since it presents a well-defined range of
values for its convergence factor uyn that guarantees the method stability, in
opposition to the equivalent factor choice for the LMS algorithm [I4].

5. GSP LMS and RLS Complementary Analysis

The analyses of the GSP LMS and RLS algorithms in [I8] cover the possi-
bility of signal reconstruction via sparse sampling and the MSD analysis, along
with of optimal sampling proposals. Here, we assume that S[k] — S and ex-
tend those analyses to incorporate the steady-state FoMs Ugn and MSEg from
Subsection Based on the accurate estimates for the error variances evalu-
ated in this section, the GSP LMS and RLS algorithms can also be used with
data-selection strategies, as we shall see in Section [6]

5.1. LMS Algorithm Error Analysis
From and , one can write

Aszlk+1] = (I - p.UrDsUr)As£[k] + pLUrDsw]k], (39)
thus implying that

E[Asx[k + 1]AsF[k + 1] = 2 UEDsC,DsUr+ (10)
+(I—p ULDsU£)E[AS £ [k] A3 7 [E]](T-p, UEDsU ).

If p11, is in the range that guarantees the algorithm stability [14], then matrix
E[As$7[k]AST[K]] converges to Sf € RZIXIFT when k — co. Thus, by defining
P,R e RVI*I¥1 such that

P=UrDsUs and R =U%LDsC,DsUr, (41)
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one can write the steady-state form of expression as
PST +SiP — uPSIP =R, (42)
which is the generalized Lyapunov matrix equation [40], being equivalent to
(I@P)+(P®I)—puL(P & P)] vec(ST) =1 vec(R), (43)

where ® indicates the Kronecker product [4I] and vec(S;) represents the vec-
torization of Sj, performed by stacking its columns into a single column vector.
When the left-hand side matrix of has full rank, vec(S;) is obtained by
solving

vee(St) =1, [I@ P)+(P @ 1) —pup,(P ® P)] 'vec(R). (44)
2

€n

After recovering matrix S} from its vectorized version, the n'! variance o
for the GSP LMS algorithm is computed by replacing Sf in , yielding

agn =d, (Ufun + uEfounf) , (45)

and from
N
MSEg =Y "d, (02, +u) Siu,,) . (46)
i=1
Moreover, an additional result that comes straightforwardly from the knowl-
edge of Sj is the MSD in (23)), so that
MSD¢ = tr{Sp}. (47)

Although a steady-state MSD¢ analysis for the LMS algorithm is presented
in [I4, 18], it requires py, to be relatively small. On the other hand, as the
derivation of does not rely on this assumption, it is more general, being
valid for any pr, that guarantees the algorithm stability.

5.2. RLS Algorithm Error Analysis
Similarly, the GSP RLS analysis starts by rewriting as

Asz[k+1]=PrAsx[k] + (1 — fr)M'UzDsC, w[k], (48)
where we recall that M’ =(U%DsC,'DsUx)~!. Thus, it implies that

E[Asx[k 4+ 1]As3[k 4 1] = BAE[As £ [k] As F[k]]+

2 T 1 1 (49)
+ (1 - 5]{) MIU]_-DSC; DsC,DsC, DsU]:M/.

Then, by considering the convergence of E[ASx[k]ASL[k]] to S € R IxI7
as k grows to infinity, one gets

1—
S* — BR

. -M'UEDsC,'DsC,DsC,'DsUsM’, (50)
1+ 6r

16



allowing us to write

o2 =dy (o) +u, Siun,), (51)
N

MSEg = " dy (07, +uy Sgu,,) (52)
n=1

MSD{, = tr{S:} . (53)

6. Time-domain Data-selective Estimation Algorithms

Based on the assumption that not all acquired data brings novelty to the
current system estimate, the data-selection (DS) idea [32]-[34] labels the received
information according to its usefulness and updates the algorithm parameters
only when the input data is classified as valuable. This section describes time-
domain DS versions of the adaptive GSP LMS, RLS, and NLMS algorithms.

As the update decision on the traditional adaptive algorithms depends on
the scalar error and the GS estimation problem deals with the error vector
e[k] in (§), it is necessary to first define how to measure data novelty in the GSP
scenario. Thus, we consider two approaches: the first one performs component-
wise comparisons between the error vector e[k] and a threshold vector ¥ € RY,
while the second one compares a squared ¢s-norm error-based metric with a
scalar 4 € R,. These strategies are respectively called component-wise error
constraint (CW-EC) and ¢z-norm error constraint (¢2N-EC). The main differ-
ence between these complementary strategies is that the CW-EC is more con-
cerned with local innovation checking, while the /3N-EC method provides an
average assessment of data novelty, being less sensitive to local changes. Thus,
selecting the most suitable approach heavily depends on the application require-
ments. We now detail these strategies for GS estimation and suggest practical
choices for the thresholds that allow to control the mean update rate.

6.1. Component-wise Error Constraint Strategy

The first update idea consists in defining a threshold vector ¥ = [y; 42 ... yn]"

such that the n'! error component e, [k] from (8] is compared to its respective
bound #¥,, € R;. If all absolute components |e,[k]| are smaller than their respec-
tive 7y, the strategy assumes the input data does not bring enough innovation
to the current system. In other words, considering that function abs(-) performs
a component-wise modulus operation on its argument vector, when

abs(e[k]) = v (54)

is true, there is no algorithm update. Otherwise, if any e,[k] has a larger
absolute value than its respective 7, we evaluate the new estimate according
to , , or , depending on the choice of the LMS, RLS, or NLMS
algorithms.

Although the constraint vector 4 can be defined in different ways, its choice
influences the algorithm behavior in terms of the update probability /rate. In

17



order to provide a fair estimate of the update rate for the component-wise
strategy, we consider the particular scenario in which the noise signal w(k] in
is Gaussiarﬂ and assume that each component e, [k] in is modeled as a zero-

mean Gaussian random variable (RV) with variance o2 . Based on expressions

, , and for the NLMS, LMS, and RLS algoni"ithms, respectively, we
find the variances ogn for the particular algorithm and define v as

’7:/@[061 Oey  vn- aeN]T, (55)

in which the so-called update factor k € R is a design parameter included to
fine tune the update rate.

The probability that all error entries will be in their respect intervals [k o, , k 0¢, |
is erf(r/1/2)18], since only |S| components of e[k] are non-zero, and the error
function erf (”yn /(\/ 20, )) describes the probability of e, [k] to fall in the interval
[—7n, ¥n) [42]. However, as the update rate is the complement of this value, the
update probability P, for the CW-EC DS estimation algorithm is

S|
]%pzl—eﬁ<;%> , (56)

Alternatively, if the designer expects an update rate P,p, we find that

k=2 erf! ( /1 — Pup) . (57)

The proposed CW-EC strategy in Algorithm [2]adds 2|S| FLOPs per iteration
(|S] modulus operations and |S| comparisons) to the algorithm complexity due
to the test condition . However, it provides a considerable reduction of the
overall complexity by avoiding unnecessary updates when condition holds.

6.2. ly-Norm Error Constraint Strategy

An alternative to the CW-EC strategy consists in representing the instanta-
neous error vector e[k] by a single scalar value, which is directly compared to a
scalar threshold ¥ € R. In order to map e[k] into a scalar value we first define
the normalized error vector &[k] € R according to its individual components
e, described by

ekl o £0,
€n=1< O, " (58)
0 , otherwise ,

where o, comes from , 7 or . Then, we select the squared f2-norm
lle[k]||3 for performing the scalar mapping. The foN-EC strategy consists in
verifying if the condition

l&lk]lI3 <7 (59)

2The Gaussian case was chosen here to simplify the mathematical development. But the
proposed methodology can be extended to other types of distributions for the noise signal.
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Algorithm 2 CW-EC data-selection strategy
1: Define update factor x € R’ via

2: Evaluate ¥ = & [O’el Oey --- JeN]T, where o, is given by , , or
1)

3 k+0

4: while (true) do

5: e[k] = DS[k] (Xw [k] - )Aco[k‘])

6: if (abs(e[k]) =4 ) then

7: Xolk + 1] = X, [k]

8 else

9: Find %, [k + 1] using (30), (10), or

10: k<« k+1

11: end

holds true, in which case there is no algorithm update.

By choosing an update expression based on either the NLMS, LMS, or RLS
algorithms, we once again consider the particular case of a Gaussian input noise
and assume that each e, [k] is modeled as a zero-mean Gaussian RV with vari-
ance 02 . As the square of a normal RV results in a chi-squared RV x7 with
one-degree of freedom [43], then ||€[k]||2 is described by a X|2$\ distribution, i.e.,
a chi-squared distribution with |S| degrees of freedom.

For an update factor x € Ry, if we consider the threshold value

7 =r|S], (60)

and remember the cumulative distribution function (CDF) of a chi-squared dis-
tribution with |S| degrees of freedom [43], the probability P, for the ¢;N-EC

strategy is estimated as
[;(0.5+|S])
Pup = TH/AElon
I'(0.5S])
where I'(+) denotes the standard gamma function, and T';(0.5x|S|) = foﬁm t0-81SI=1e—tqt

is an upper incomplete gamma function. Alternatively, if the designer expects
a P,p update rate, we find that

(61)

= gl (P TO3IS)) (62)

Algorithm [3] summarizes the proposed ¢2N-EC DS strategy.

7. Numerical Simulations

We performed numerical experiments using real-world-based scenarios that
require the estimation of temperature values according to noisy measurements
from nearby weather stations. Since the underlying GSs have spatial correlation,
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Algorithm 3 ¢;N-EC data-selection strategy

1: Define update factor x € R’ via

2: Evaluate ¥ = k |S]

3: k<0

4: while (true) do

5 elk] = Dsgg (xu K] — %o[F)

6: Obtain e[k], whose entries €,[k] are given by
7 it (Jelkl3<7) then

8 %olk+ 1] = %o[k]

9: else
10: Find %, [k + 1] using (30), (10), or
11: k<« k+1
12: end

which is illustrated by the smooth temperature variations in Figure[1| we recast
these problems into a bandlimited GS online reconstruction context, where we
used the NLMS, LMS, and RLS adaptive algorithms discussed in this work to
estimate the unknown temperature measurements.

For assessing the theoretical predictions from Sections [d}j6] we first consider
a partially synthetic graph signal in Subsection [7.1] Then, for comparing the
behavior of the adaptive algorithms in tracking real data, Subsection [7.2] pro-
vides simulations with static and time-varying reference graph signals. All the
experiments discussed in this section have been implemented in a MATLAB
environment and the scripts are available at [44].

7.1. Brazilian Climate Normals Dataset

Based on the monthly average temperature dataset for Brazilian weather
stations in the 1961-1990 period [22]-[23], we obtained a graph with N = 299
nodes where each vertex spatial location is described by its latitude and lon-
gitude coordinates. Using these geographical coordinates, the graph structure
was formed by connecting each node to its 8 closest neighbors and assigning the
edge weights {anm} according to the Gaussian kernel weighting function [3]

du(n,m)? e
P exp ( g ), if v,v, € &, (63)
0 , otherwise,

where dy(n,m) is the Haversine distance between vertices v,, and v,,, 8 was
taken as 2-10% and the condition v,,v,, € & checks if the edge connecting nodes
vy, and vy, is part of the set £.

After verifying that the original temperature measurements comprise an ap-
prozimate bandlimited GS, i.e., that the majority of their spectrum is concen-
trated on a limited number of frequencies, we assumed that a reconstruction
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error of 2.5% satisfies the current application requirement. Based on this as-
sumption, we selected the 200 most relevant frequencies of the GS frequency-
domain representation of the July measurements (Figure [1)) to define F. The
sampling set size was taken as |S| = 210, and the indices of this set were obtained
by a greedy approach that maximizes the minimum non-negative eigenvalue of
(UJTTDSU{”}Uf) at each internal iteration n, a procedure suggested in [10, [14]
and discussed in [21], eventually yielding a static set S[k] = S.

We then took the indices in F of the original GS representation s from (1)
to obtain sy € R”! and defined an vertex-domain bandlimited GS x, as (3).
This bandlimited approximation was performed with a didactic intention since
we are more concerned in evaluating the behavior of the GSP NLMS, LMS, and
RLS adaptive algorithms in this subsection, rather than in directly dealing with
the original signal (as done in Subsection . For an explicit definition of the
bandlimited reference x,, the edge weights forming the adjacency matrix A, the
frequency set F, the sampling set S, and their respective matrices Ur and Dg,
see [44].

7.1.1. Noise Scenarios
In order to evaluate the adaptive GSP algorithms in different noise scenarios,
we use a generic covariance matrix C,, as

C, =diag(os, 1405, 1), (64)

where 1 € R¥ is a vector with all components equal to 1, r,, € RY is a real-
ization of a random vector whose entries follow a uniform distribution between
[0,1], and agja,afub € Ry are variances that scale the elements of 1 and r,,
respectively.

Although the theoretical predictions provided are valid for any symmetric
C., we focus on diagonal matrices because we do not expect the influence of
correlated noise on more than one graph vertex measurement, since we consider
sensor positions that are not close to each other. For C,, in , aﬁ)a represents
the noise variance observed in all nodes, which might be caused by the same
type of sensor device being used in all locations, while aﬁ}b accounts for the noise
variance differences among nodes.

Thus, we defined the noise signal w[k] used for each simulation as zero-mean
Gaussian according to three scenarios:

(i) o
(ii) o

(iii) o

2. =0.001 and ¢ = 0.000;
2., =0.010 and o2, = 0.000; and
2. = 0.005 and o2, = 0.010.
7.1.2. Convergence Speed and Complexity Comparison

We performed numerical simulations based on the noise scenarios (i) and (iii)
to analyze the overall performance of the proposed GSP NLMS algorithm, when
using both the general implementation and the particular approach (33)), in
comparison to the LMS [I4] and RLS [I7] strategies. For each noise scenario we
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used the three adaptive GSP algorithms, with respective convergence/forgetting
factors adjusted in order to provide a similar MSD¢,. At each simulation run we
evaluated 5000 iterations, where we scaled the reference GS x, by a 1.2 factor
at k = 2500 to observe the algorithms’ tracking abilities. We considered that:
the algorithm has converged after reaching 1.025 - MSDg; for the first time, the
steady-state FoMs are computed using the last 1000 iterations of each run, and
the update time uses the “tic/toc” MATLAB functions to provide the reader
with a rough idea of how long it takes to compute %, [k + 1] for each algorithm
in our simulations. Based on the average values of a 1000-run ensemble, we
obtained the numerical results presented in Table

From Table [2| we observe that the GSP NLMS algorithm converges consid-
erably (more than 10 times) faster than the LMS algorithm, but slightly (about
twice) slower than the RLS algorithm. This convergence speed comparison is
made clear by the MSD¢ [k] plots in Figure [2| where we only compare the NLMS
and LMS methods in Figure 2a] and display the three algorithms in Figure 2b]
A particular point about Figure [2b|is that the transition at & = 2500 indicates
that the NLMS algorithm behaves like the RLS for large &, as pointed out in
Subsection Another conclusion from Table [2] is that the computation com-
plexity for performing the GSP LMS update is noticeably smaller than the one
required for computing the general implementation of the GSP NLMS in ,
which is still about 2.9 times faster than the RLS approachﬂ In particular, one
verifies in Table [2| that the GSP NLMS approach in provides the same fast
converging characteristic of its general implementation while being as complex
as the GSP LMS algorithm, however, it requires S[k] to be static and a priori
known. Additionally, it is worth mentioning that the large difference in update
time among the adaptive algorithms occurs because the current simulation sce-
nario does not rely on the condition |F| < N (|F| = 0.7N), where the dominant
term in Table [l becomes N.

7.1.8. Steady-State FoM Predictions

Next, we investigate the accuracy of the steady-state MSE¢ and MSD¢, pre-
dicted for the NLMS algorithm in Subsection and for the LMS and RLS
algorithms in Section [5| By using the noise scenarios (ii) and (iii) described in
Subsection we employed different convergence/forgetting factors (un, 41,
and Bgr) to assess the theoretical predictions in diverse conditions. At each sim-
ulation run we evaluated 3000, 12000, and 1500 iterations for the NLMS, LMS,
and RLS algorithms, respectively, where we considered the last 1000 iterations
of each run to be part of the steady state. By taking an average of the MSE [k]
and MSD¢[k] measurements at steady state for an ensemble of 1000 runs, we
obtained the experimental results presented in Table [3} These results are com-

3 Although these complexity results cannot be directly compared to the FLOPs estimation
in Subsection @ they corroborate it in terms of order of magnitude, illustrating that the
GSP NLMS complexity represents a trade-off between the simpler GSP LMS and the more
computationally complex GSP RLS.
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Table 2: MSD{,, iterations until convergence, and time for computing Xo[k + 1]

Entry Simulation Setup Simulation Results
Alg. Factor Cw  %olk4+1] | MSDy, Converg. Upd. Time

(L.I) LMS 0.28 (1) (10) 0.0313 1662 iter. 40 ps
(R RLS 093 (1) (14) 0.0309 57 iter. 7041 ps
(NI) | NLMS 007 (1) (30) 0.0308 131 iter. 2474 ps
(N.I) NLMS 0.07 (1) (33) 0.0308 125 iter. 41 ps
(L.II) LMS 0.28 3) (10) 0.3111 1416 iter. 41 ps
(RI) | RLS 093 (3) (14) 0.3041 57 iter. 7014 ps
(N.IT) NLMS 0.07 3) (30) 0.3055 114 iter. 2446 us
(NIP) | NLMS 007  (3) (33) 0.3058 111 iter. 41 ps
(LIO) | LMS 0721 (3) (10) 0.0087 488 iter. 10 ps
(R.IID) RLS 0.792 (3) (14) 0.9729 18 iter. 7034 us
(NIIT) | NLMS 0208  (3) (30) 0.9765 34 iter. 2457 ps
(N.IIT’) | NLMS  0.208 (3) (33) 0.9779 33 iter. 41 ps

‘ ‘ —(L.f) wees (NUII)
=7 401 — (N.I) «ees (LIID) ||
=3 iiff%% (L.IT) ««e (NLIII)
o 20‘ “‘ q{% 4
-20 : : :
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Number of Iterations &

ey e
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Number of Iterations k
(b)

Figure 2: MSDg[k] behavior when using the simulation scenarios described in Table (a)
LMS and NLMS algorithms. (b) LMS, RLS, and NLMS algorithms.
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Table 3: Theoretical and experimental MSEf, and MSD¢,, and their respective REs, for
the NLMS, LMS, and RLS algorithms with different factors un, pr, and Br, respectively.
Ensemble of 1000 runs and noise scenarios (ii) and (iii)

C,, — (i) C,, — (iii)

Algor. | Factor | . M.SEG M.SDG M.SEG M.SDG
eory Simul. RE[%] | Theory Simul. RE[%] | Theory Simul. RE[%] | Theory Simul. RE[%]
0.05 2.1513 2.1512 0.005 0.2217 0.2212 0.226 2.1464 2.1460 0.019 0.2202 0.2200 0.091
NLMS 0.10 2.2053 2.2052 0.005 0.4550 0.4549 0.022 2.2003 2.2004 -0.005 0.4520 0.4522 -0.044
0.25 2.3857 2.3855 0.008 1.2350 1.2358 -0.065 2.3804 2.3801 0.013 1.2268 1.2264 0.033
0.50 2.7667 2.7665 0.007 2.8817 2.8822 -0.017 2.7607 2.7605 0.007 2.8626 2.8623 0.010
0.20 2.2600 2.2599 0.004 0.2160 0.2159 0.046 2.2600 2.2598 0.009 0.2160 0.2161 -0.046
LMS 0.50 2.5717 2.5711 0.023 0.6179 0.6179 0.000 2.5673 2.5674 -0.004 0.6171 0.6171 0.000
1.00 3.4617 3.4638 -0.061 1.6803 1.6815 -0.071 3.4585 3.4595 -0.029 1.6793 1.6804 -0.065
0.95 2.1513 2.1516 -0.014 0.2217 0.2217 0.000 2.1513 2.1512 0.005 0.2217 0.2217 0.000
RLS 0.90 2.2053 2.2050 0.014 0.4550 0.4551 -0.022 2.1999 2.1998 0.005 0.4501 0.4501 0.000
0.75 2.3857 2.3857 0.000 1.2350 1.2362 -0.097 2.3794 2.3795 -0.004 1.2216 1.2221 -0.041

pared to the MSE{, and MSD¢, theoretical predictions presented in: (34]), ,
and for the NLMS algorithm; and for the LMS algorithm; and
and for the RLS algorithm. Additionally, in Table |3 we also include a
relative error (RE) metric computed as

Theory value — Simul. result

Relative error (RE) = (65)

Simul. result

From Table [3| we verify that the MSE{, and MSD{, predictions provided for
the NLMS, LMS, and RLS algorithms are accurate across all different simula-
tion scenarios. In particular, all results present an RE smaller than 0.25% with
respect to their theoretical estimates. Although both the MSE{, and MSDg, pre-
dictions have been obtained in this work for all three adaptive GSP algorithms,
it is worth mentioning that the MSDg, for the LMS and RLS algorithms has
been previously presented in [I8]. However, the analysis for the LMS algorithm
requires pr, to be small and it presents an approximation that provides worse
estimates of MSD{ as yu, increases. On the other hand, we observe from Table 3]
that the accurate predictions for the LMS algorithm using do not degrade
with large up, factors.

7.1.4. Update Rate Steady-State Predictions

Finally, we performed a few numerical simulations to observe the behavior
of the DS strategies presented in Section [ and to verify the accuracy of update
rate expressions and . We will refer to the CW-EC strategy in Sub-
section as DS scheme (I) and the (;N-EC strategy from Subsection as
DS scheme (IT). By using the noise scenarios (ii) and (iii) described in Subsec-
tion we employed different values of update factor x for each DS scheme.
For each of these environments we used either the NLMS, LMS, or RLS as the
adaptive algorithm with factors ux = 0.1, ur, = 0.5, and fgr = 0.9, in a total of
2500, 10000, and 2000 iterations for run, respectively. To compute P, we only
considered the last 1000 iterations of each run, and evaluated the average across
an ensemble with 1000 runs. The scenario descriptions, theoretical predictions,
and experimental results for the DS adaptive GSP strategies are in Table [4
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Table 4: Stationary Pyp and RE for the adaptive GSP algorithms using DS strategies (I) and
(II). Factors un = 0.1, pg, = 0.5, and Sr = 0.9 and total of 2500, 10000, and 2000 iterations
for the NLMS, LMS, and RLS algorithms, respectively. Ensemble of 1000 runs and noise
scenarios (ii) and (iii)

C., — () C,, — ()

DS [ Theory NLMS LMS RLS NLMS LMS RLS

Pupl%] | Pup[%] RE[%] | Pupl%] RE[%] | Pup[%] RE[%] | Pup[%] RE[%] | Pup[%] RE[%] | Pupl%] RE[%]
(@) | 3.00 | 43.319 | 43.314  0.0i12 | 43.300  0.044 | 43.325  -0.014 | 43.322  -0.007 | 43.343 _ -0.055 | 43.382  -0.145
(1) | 350 | 9.310 9.322  -0.129 | 9.339  -0.311 | 9.319  -0.097 | 9.283  0.291 9.244 0714 | 9.272  0.410
(1) | 375 | 3.646 3.658  -0.328 | 3.640  0.165 | 3.635  0.303 | 3.647  -0.027 | 3.650 -0.110 | 3.678  -0.870
(T) | 1.00 | 48.702 | 48.509  0.212 | 48.781  -0.162 | 48.744  -0.086 | 48.682  0.041 | 48.645  0.117 | 48.718  -0.033
(1) | 1.10 | 15.276 | 15.301  -0.163 | 15.375  -0.644 | 15.214  0.408 | 15.317 -0.268 | 15.356 -0.521 | 15.296  -0.131
(1) | 115 | 6.701 6.682 0284 | 6.841  -2.046 | 6.724  -0.342 | 6.730  -0.431 | 6.791  -1.325 | 6.733  -0.475

MSDg; [dB]

100 200 300 400 500
Number of Iterations &

Figure 3: MSDg of the NLMS algorithm when using different factors « for the CW-EC DS
strategy.

Based on Table 4| we conclude that the estimates and provide fair
predictions about the update probability, where the largest RE evaluated is
less than 2.5%. For both DS strategies we observe that a k increase implies a
reduction of the P,;,, which is an interesting feature since it enhances the overall
computational complexity reduction. However, the trade-off for increasing s is
a reduction in the algorithm convergence speed, as can be noted in the MSD¢g
behavior for the CW-EC strategy in Figure[3] Therefore, as Table[dand Figure[3]
indicate, one may reduce the overall complexity of the adaptive GSP algorithm
by increasing the update factor of the DS strategy, at the cost of slowing down
the convergence.

7.2. U.S. Climate Normals Dataset

For assessing the adaptive algorithms’ performance with real data, we con-
sidered the dataset in [37], from which we extracted meteorological information
of weather stations distributed on the United States’ territory, as done in [18].
We collected the temperature hourly records from the first 95 hours of January
2010 and, after discarding the stations with missing inputs, we obtained a to-
tal of N = 205 stations in the US mainland. By employing all of these data
for representing the graph signal in the current scenario, the graph structure is
obtained through a procedure similar to the one described in Subsection [7.1]
but using a 7-nearest-neighbor approach, as in [I8]. According to this proce-
dure, we found the graph structure illustrated in Figure [ where it is shown
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the temperature measurements at 01:00 from January 15 2010.

Latitude

Longitude

Figure 4: Graph structure inferred for the dataset [37], with the temperature (degree Celsius)
hourly record from January 15¢ 2010 at 01:00 as the graph signal.

Assuming an acceptable reconstruction error of 5%, we found that | F| = 125
resulted in a suitable approximation. The sampling set S was obtained as in
Subsection where we have used |S| = 130. In order to first compare the
GSP LMS, RLS, and NLMS algorithms in a static real data scenario, we have
employed the temperature values at 01:00 January 15* 2010 with an incident
noise following the noise scenario (ii) from Subsection[7.1.1} By using the factors
pr, = 1.5 and Sg = 0.5 suggested in [18], and ux = 0.5, the behavior of MSDg []
is displayed for the adaptive algorithms in Figure[5] The undershoot behavior
of the GSP LMS method in Figure |5| might be justified by a large value of ur,
taking the algorithm closer to its instability region; yet, the GSP LMS still
requires a much longer time for settling in comparison to the proposed GSP
NLMS algorithm, which is almost as fast as the GSP RLS procedure.

—LMS ]
—RLS
NLMS|]

0 20 40 60 80
Number of Iterations k

Figure 5: Adaptive algorithms performance when estimating a static real data from [37].

Additionally, for assessing the performance of these adaptive strategies in
tracking real data, we have employed the GSP LMS, RLS, and NLMS algorithms
for estimating unobserved weather stations using the dataset from 01:00 January
1%t 2010 until 23:00 January 4" 2010. The estimation of a randomly picked
unobserved node, which have not been sampled according to the index set S, is
presented in Figure[6] Based on this result, we observe that the behavior of the
GSP NLMS resembles the GSP RLS algorithm (apart from a slight difference in
the first iterations), while presenting a better performance in estimating most
unobserved nodes in comparison to the GSP LMS method.
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Figure 6: Original temperature signal and adaptive estimates across time at a randomly
picked unobserved weather station from [37].

8. Conclusion

In this paper we proposed an adaptive strategy for online reconstruction of
bandlimited graph signals based on the NLMS algorithm and two time-domain
data-selective methods for reducing the overall computational complexity of
general adaptive GSP algorithms. The proposed GSP NLMS algorithm presents
much faster convergence than the LMS algorithm and is introduced with a
comprehensive analysis that predicts some steady-state figures of merit. The
same analysis methodology allows the estimation of steady-state metrics for
the LMS and RLS algorithms, complementing prior results. These steady-state
values are used for predicting the update probability of the proposed data-
selective strategies when they are implemented with all three GSP adaptive
algorithms. Simulation results indicate that the metric estimations provided in
the analyses and the update probability predicted for data-selective techniques
are accurate.

Appendix A. RLS Estimation Alternative Update Equations

In this part we represent W[k| and v [k] from and with subscript
indices k as ¥, and v, respectively, for simplicity sake. Additionally, due to
its initialization as a diagonal matrix, from (12)) we find that ¥y is symmetric.

Based on , by taking G = Ds[k]U].-\IllzflUJTq_-DS[k]7 the matrix inversion
lemma states that \1;;1 can be written as

O, =1- ¥, UrDs(BrCuw+ Gi) 'DsiyUsz] By ' ¥ . (A1)

From 1) and X[k + 1] in (13), it is clear that W *apy is equal to §7[k + 1].
Thus, by multiplying ;" in (A.1) and ) from we find §x[k + 1]. Based
on (), %[k + 1] is

Xolk+1] = Xo[k] + Ur¥; 1 UrDsp (BrCuw + Gi) ~'e[k]. (A.2)

When right-multiplying 1D by U;{-Dg[k]Cal it follows that

U, 'UrDgC,' = ¥, 1 UrDgp (BrCuw + Gi) 7,
which allows us to rewrite expression (A.2) as
Kok + 1] = %,[k] + Ur¥; ' UrDgp;, C,,  e[k] . (A.3)
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Appendix B. GSP NLMS Stability and Convergence Derivations

As we shall focus on steady-state values, let us assume a time-invariant
reference GS such that sx[k] = s and a time-invariant noise covariance matrix
such that C,[k] = C,,.

Based on the definition of A§z[k] in and the frequency-domain version
of equation , it follows that

Asrlk+1] = (1 — un)Asx[k] + unM[E|UFD g wlk] (B.1)
thus yielding E{Asx[k + 1]} = (1 — ux) E{As£[k]}. This allows one to write
E{A8£[H} = (1 - )" E{A35[0]} (B.2)

Considering that E{A§x[0]} can be any vector, to guarantee that E{Asr[k]}
in converges to a null vector as k increases, we must choose a parameter
pn such that |1 — un| < 1. As a result, the interval that guarantees convergence
to an unbiased solution is

0<pun<2. (B.3)

In addition, by defining Sx[k] = E[A&x[k]AsX[k]] and assuming that S[k]
converges to a static sampling set S, one has from (B.1) that
Sx[k +1] = (1 — ux)*Sx[k] + ZMUEDsC,DsU M, (B.4)

which is a difference equation that converges to a solution as long as |1 —ux| < 1,
i.e., the condition in (B.3]) holds true. In this case, stability is guaranteed and
E[A3£[k]A&F[k]] approaches S§ € RIFIXIF| as k — oo, given as

Sk = Swloo] = TLN MULD;C,DsUsM. (B.5)
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