25,050 research outputs found

    Strategies for Optimize Off-Lattice Aggregate Simulations

    Full text link
    We review some computer algorithms for the simulation of off-lattice clusters grown from a seed, with emphasis on the diffusion-limited aggregation, ballistic aggregation and Eden models. Only those methods which can be immediately extended to distinct off-lattice aggregation processes are discussed. The computer efficiencies of the distinct algorithms are compared.Comment: 6 pages, 7 figures and 3 tables; published at Brazilian Journal of Physics 38, march, 2008 (http://www.sbfisica.org.br/bjp/files/v38_81.pdf

    On the relation between mass of pion, fundamental physical constants and cosmological parameters

    Full text link
    In this article we reconsider the old mysterious relation, advocated by Dirac and Weinberg, between the mass of the pion, the fundamental physical constants, and the Hubble parameter. By introducing the cosmological density parameters, we show how the corresponding equation may be written in a form that is invariant with respect to the expansion of the Universe and without invoking a varying gravitational "constant", as was originaly proposed by Dirac. It is suggest that, through this relation, Nature gives a hint that virtual pions dominante the "content" of the quantum vacuum

    Contact process on a Voronoi triangulation

    Full text link
    We study the continuous absorbing-state phase transition in the contact process on the Voronoi-Delaunay lattice. The Voronoi construction is a natural way to introduce quenched coordination disorder in lattice models. We simulate the disordered system using the quasistationary simulation method and determine its critical exponents and moment ratios. Our results suggest that the critical behavior of the disordered system is unchanged with respect to that on a regular lattice, i.e., that of directed percolation

    Aggregation in a mixture of Brownian and ballistic wandering particles

    Full text link
    In this paper, we analyze the scaling properties of a model that has as limiting cases the diffusion-limited aggregation (DLA) and the ballistic aggregation (BA) models. This model allows us to control the radial and angular scaling of the patterns, as well as, their gap distributions. The particles added to the cluster can follow either ballistic trajectories, with probability PbaP_{ba}, or random ones, with probability Prw=1PbaP_{rw}=1-P_{ba}. The patterns were characterized through several quantities, including those related to the radial and angular scaling. The fractal dimension as a function of PbaP_{ba} continuously increases from df1.72d_f\approx 1.72 (DLA dimensionality) for Pba=0P_{ba}=0 to df2d_f\approx 2 (BA dimensionality) for Pba=1P_{ba}=1. However, the lacunarity and the active zone width exhibt a distinct behavior: they are convex functions of PbaP_{ba} with a maximum at Pba1/2P_{ba}\approx1/2. Through the analysis of the angular correlation function, we found that the difference between the radial and angular exponents decreases continuously with increasing PbaP_{ba} and rapidly vanishes for Pba>1/2P_{ba}>1/2, in agreement with recent results concerning the asymptotic scaling of DLA clusters.Comment: 7 pages, 6 figures. accepted for publication on PR
    corecore