14,856 research outputs found

    Incorporation of proteins and enzymes at different stages of the preparation of calcium phosphate coatings on a degradable substrate by a biomimetic methodology

    Get PDF
    In this work, the possibility of incorporating proteins into calcium phosphate (Ca-P) coatings, prepared on the surface of starch polymeric biomaterials by means of a biomimetic route, was investigated. The morphology, chemical composition and crystallinity of Ca-P coatings was assessed and related to the incorporation of the studied biomolecules. For that, bovine serum albumin (BSA) and aamylase were added in concentrations of 1 mg/ml to simulated body fluid (SBF) solutions, being both added at the nucleation or growth stages of the biomimetic coating process. A biodegradable blend of corn starch/ethylene vinyl alcohol (SEVA-C) was used as substrate and bioactive glass (45S5 BioglassR) was used as the nucleating agent. The obtained Ca-P coatings were characterised by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy using an attenuated reflectance device (FTIR-ATR) and thin-film X-ray diffraction (TF-XRD). Additionally, to evaluate the activity of the incorporated enzyme and the stability of the Ca-P films, coated samples were immersed in an SBF solution for different periods of time. The enzyme activity was measured and the morphology of the coating examined by SEM. The results obtained showed that the presence of protein molecules, at the nucleation or growth stages, lead to the formation of a dense Ca-P film presenting different morphologies that were different of the selected coating conditions. FTIR-ATR analysis detected the presence of carbonate and phosphate groups on the Ca-P layer, indicating the formation of a coating similar to the mineral component of vertebrates bone tissue. When proteins were added, amide I and amide II bands, characteristic groups of protein molecules, were also detected, revealing the efficient incorporation of these biomolecules into the Ca-P coatings. Ca-P coatings, with a-amylase incorporated at the nucleation stage, showed no degradation of the film after incubation in SBF for 28 days. The release of increasing concentration of reducing sugars with degradation time revealed that a-amylase was efficiently incorporated in the coating remaining active throughout the coating preparation. This can be a strategy that will allow, in addition of conferring osteoconductive properties to biodegradable polymers, also simultaneously tailoring their degradation kinetics.Fundação para a Ciência e a Tecnologia (FCT

    Effects of protein incorporation on calcium phosphate coating

    Get PDF
    The incorporation of proteins into calcium phosphate (Ca–P) coatings is expected to alter their properties. The aim of this work is, therefore, to study the effect of protein concentration on the formation of Ca–P film. A biodegradable blend of corn starch/ethylene vinyl alcohol (SEVA-C) was used as substrate and bioactive glass (45S5 Bioglass®) was used as a nucleating agent. Bovine serum albumin (BSA) and α-amylase were added, separately, at a concentration of 0.5, 1, and 5 mg/mLto simulated body fluid (SBF) solutions, at the nucleation stage. The incorporation of protein molecules was shown to affect the properties of Ca–P coatings in terms of morphology, composition and crystallinity. Both proteins seem to inhibit in some extent and/or retard the growth of Ca–P nuclei at 0.5 and 5 mg/mL concentrations. FTIR analyses revealed the presence of phosphate and carbonate groups, confiming the formation of a Ca–P layer. The characteristic groups of protein molecules were also detected on the IR spectra, which indicate the efficient incorporation of the proteins into the coatings. When α-amylase was added to the SBF solution the production of reducing sugars was detected, proving the retention of enzyme activity. These results suggest the carrier potential of Ca–P coatings for the sustained delivery of other biologically active proteins and consequently with a strong potential for inducing bone tissue regeneration.This work was partially supported by Portuguese Foundation for Science and Technology (FCT) and was performed within the framework of the project BIOLEARN (POCTI/CTM/38803/2001) through funds from the POCH and/or FEDER Programmes. 1. B. Leonor thanks FCT for providing her a PhD scholarship (SFRH/BD/9031/2002)

    Human dimensions in LBA.

    Get PDF
    By focusing on the linkages between human-induced land cover/use change and the functioning of Amazonian systems, LBA research needs significant contributions from the social and human sciences

    Dirac-Surface-State-Dominated Spin to Charge Current Conversion in the Topological Insulator (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 Films at Room Temperature

    Full text link
    We report the spin to charge current conversation in an intrinsic topological insulator (TI) (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 film at room temperature. The spin currents are generated in a thin layer of permalloy (Py) by two different processes, spin pumping (SPE) and spin Seebeck effects (SSE). In the first we use microwave-driven ferromagnetic resonance of the Py film to generate a SPE spin current that is injected into the TI (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 layer in direct contact with Py. In the second we use the SSE in the longitudinal configuration in Py without contamination by the Nernst effect made possible with a thin NiO layer between the Py and (Bi0.22Sb0.78)2Te3(Bi_{0.22}Sb_{0.78})_2Te_3 layers. The spin-to-charge current conversion is attributed to the inverse Edelstein effect (IEE) made possible by the spin-momentum locking in the electron Fermi contours due to the Rashba field. The measurements by the two techniques yield very similar values for the IEE parameter, which are larger than the reported values in the previous studies on topological insulators.Comment: 18 pages and 7 figure

    The galactic population of white dwarfs

    Get PDF
    Original paper can be found at: http://www.iop.org/EJ/conf DOI: 10.1088/1742-6596/172/1/012004 [16th European White Dwarfs Workshop]The contribution of white dwarfs of the different Galactic populations to the stellar content of our Galaxy is only poorly known. Some authors claim a vast population of halo white dwarfs, which would be in accordance with some investigations of the early phases of Galaxy formation claiming a top-heavy initial– mass– function. Here, I present a model of the population of white dwarfs in the Milky Way based on observations of the local white dwarf sample and a standard model of Galactic structure. This model will be used to estimate the space densities of thin disc, thick disc and halo white dwarfs and their contribution to the baryonic mass budget of the Milky Way. One result of this investigation is that white dwarfs of the halo population contribute a large fraction of the Galactic white dwarf number count, but they are not responsible for the lion's share of stellar mass in the Milky Way. Another important result is the substantial contribution of the – often neglected – population of thick disc white dwarfs. Misclassification of thick disc white dwarfs is responsible for overestimates of the halo population in previous investigations.Peer reviewe
    • …
    corecore