247 research outputs found
Putting "space" on the agenda of sociocultural research in education
The global rescaling of the world, culture, and education has influenced how people experience their situationality, meaning-making, and learning in relation to the Other. This article explores the implications of spatial analysis for rethinking education in new conditions of cultural complexity. The experience of living and learning with difference is conceptualized as an open journey in which the very act of movement across spatial boundaries unlocks the fixity of meanings and identities and, hence, problematizes the spatial logic of bounded learning places. Explicating the tension between fixity and mobility, boundedness and flows, this article deploys the concepts of cultural-semiotic space, scale, and boundary to theorize locations of learning and meaning-making in new times. <br /
Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system
In classical Drude theory the conductivity is determined by the mass of the
propagating particles and the mean free path between two scattering events. For
a quantum particle this simple picture of diffusive transport loses relevance
if strong correlations dominate the particle motion. We study a situation where
the propagation of a fermionic particle is possible only through creation and
annihilation of local bosonic excitations. This correlated quantum transport
process is outside the Drude picture, since one cannot distinguish between free
propagation and intermittent scattering. The characterization of transport is
possible using the Drude weight obtained from the f-sum rule, although its
interpretation in terms of free mass and mean free path breaks down. For the
situation studied we calculate the Green's function and Drude weight using a
Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction
Correlation-induced metal insulator transition in a two-channel fermion-boson model
We investigate charge transport within some background medium by means of an
effective lattice model with a novel form of fermion-boson coupling. The bosons
describe fluctuations of a correlated background. By analyzing groundstate and
spectral properties of this transport model, we show how a metal-insulator
quantum phase transition can occur for the half-filled band case. We discuss
the evolution of a mass-asymmetric band structure in the insulating phase and
establish connections to the Mott and Peierls transition scenarios.Comment: 4 pages, 4 figures, 1 table, revised version accepted for publication
in Phys. Rev. Let
Optical absorption and activated transport in polaronic systems
We present exact results for the optical response in the one-dimensional
Holstein model. In particular, by means of a refined kernel polynomial method,
we calculate the ac and dc electrical conductivities at finite temperatures for
a wide parameter range of electron phonon interaction. We analyze the
deviations from the results of standard small polaron theory in the
intermediate coupling regime and discuss non-adiabaticity effects in detail.Comment: 7 pages, 8 figure
Carrier-density effects in many-polaron systems
Many-polaron systems with finite charge-carrier density are often encountered
experimentally. However, until recently, no satisfactory theoretical
description of these systems was available even in the framework of simple
models such as the one-dimensional spinless Holstein model considered here. In
this work, previous results obtained using numerical as well as analytical
approaches are reviewed from a unified perspective, focussing on spectral
properties which reveal the nature of the quasiparticles in the system. In the
adiabatic regime and for intermediate electron-phonon coupling, a
carrier-density driven crossover from a polaronic to a rather metallic system
takes place. Further insight into the effects due to changes in density is
gained by calculating the phonon spectral function, and the fermion-fermion and
fermion-lattice correlation functions. Finally, we provide strong evidence
against the possibility of phase separation.Comment: 13 pages, 6 figures, accepted for publication in J. Phys.: Condens.
Matter; final versio
Polarons and slow quantum phonons
We describe the formation and properties of Holstein polarons in the entire
parameter regime. Our presentation focuses on the polaron mass and radius,
which we obtain with an improved numerical technique. It is based on the
combination of variational exact diagonalization with an improved construction
of phonon states, providing results even for the strong coupling adiabatic
regime. In particular we can describe the formation of large and heavy
adiabatic polarons. A comparison of the polaron mass for the one and three
dimensional situation explains how the different properties in the static
oscillator limit determine the behavior in the adiabatic regime. The transport
properties of large and small polarons are characterized by the f-sum rule and
the optical conductivity. Our calculations are approximation-free and have
negligible numerical error. This allows us to give a conclusive and impartial
description of polaron formation. We finally discuss the implications of our
results for situations beyond the Holstein model.Comment: Final version, 10 pages, 10 figure
Optical conductivity of polaronic charge carriers
The optical conductivity of charge carriers coupled to quantum phonons is
studied in the framework of the one-dimensional spinless Holstein model. For
one electron, variational diagonalisation yields exact results in the
thermodynamic limit, whereas at finite carrier density analytical
approximations based on previous work on single-particle spectral functions are
obtained. Particular emphasis is put on deviations from weak-coupling,
small-polaron or one-electron theories occurring at intermediate coupling
and/or finite carrier density. The analytical results are in surprisingly good
agreement with exact data, and exhibit the characteristic polaronic excitations
observed in experiments on manganites.Comment: 23 pages, 11 figure
Learning to Teach Argumentation: Research and development in the science classroom
The research reported in this study focuses on an investigation into the teaching of argumentation in secondary science classrooms. Over a one-year period, a group of 12 teachers from schools in the greater London area attended a series of workshops to develop materials and strategies to support the teaching of argumentation in scientific contexts. Data were collected at the beginning and end of the year by audio and video recording lessons where the teachers attempted to implement argumentation. To assess the quality of argumentation, analytical tools derived from Toulmin's argument pattern (TAP) were developed and applied to classroom transcripts. Analysis shows there was development in teachers' use of argumentation across the year. Results indicate that the pattern of use of argumentation is teacher-specific, as is the nature of change. To inform future professional development programmes, transcripts of five teachers, three showing a significant change and two no change, were analysed in more detail to identify features of teachers' oral contributions that facilitated and supported argumentation. The analysis showed that all teachers attempted to encourage a variety of processes involved in argumentation and that the teachers whose lessons included the highest quality of argumentation (TAP analysis) also encouraged higher order processes in their teaching. The analysis of teachers' facilitation of argumentation has helped to guide the development of in-service materials and to identify the barriers to learning in the professional development of less experienced teachers
Criticality of the Mean-Field Spin-Boson Model: Boson State Truncation and Its Scaling Analysis
The spin-boson model has nontrivial quantum phase transitions at zero
temperature induced by the spin-boson coupling. The bosonic numerical
renormalization group (BNRG) study of the critical exponents and
of this model is hampered by the effects of boson Hilbert space
truncation. Here we analyze the mean-field spin boson model to figure out the
scaling behavior of magnetization under the cutoff of boson states . We
find that the truncation is a strong relevant operator with respect to the
Gaussian fixed point in and incurs the deviation of the exponents
from the classical values. The magnetization at zero bias near the critical
point is described by a generalized homogeneous function (GHF) of two variables
and . The universal function has a
double-power form and the powers are obtained analytically as well as
numerically. Similarly, is found to be a GHF of
and . In the regime , the truncation produces no effect.
Implications of these findings to the BNRG study are discussed.Comment: 9 pages, 7 figure
On the Munn-Silbey approach to polaron transport with off-diagonal coupling
Improved results using a method similar to the Munn-Silbey approach have been
obtained on the temperature dependence of transport properties of an extended
Holstein model incorporating simultaneous diagonal and off-diagonal
exciton-phonon coupling. The Hamiltonian is partially diagonalized by a
canonical transformation, and optimal transformation coefficients are
determined in a self-consistent manner. Calculated transport properties exhibit
substantial corrections on those obtained previously by Munn and Silbey for a
wide range of temperatures thanks to a numerically exact evaluation and an
added momentum-dependence of the transformation matrix. Results on the
diffusion coefficient in the moderate and weak coupling regime show distinct
band-like and hopping-like transport features as a function of temperature.Comment: 12 pages, 6 figures, accpeted in Journal of Physical Chemistry B:
Shaul Mukamel Festschrift (2011
- âŠ