836 research outputs found
Latest results from the PHOBOS experiment
Over the past years PHOBOS has continued to analyze the large datasets
obtained from the first five runs of the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory. The two main analysis streams have been
pursued. The first one aims to obtain a broad and systematic survey of global
properties of particle production in heavy ion collisions. The second class
includes the study of fluctuations and correlations in particle production.
Both type of studies have been performed for a variety of the collision
systems, covering a wide range in collision energy and centrality. The uniquely
large angular coverage of the PHOBOS detector and its ability to measure
charged particles down to very low transverse momentum is exploited. The latest
physics results from PHOBOS, as presented at Quark Matter 2008 Conference, are
contained in this report.Comment: 9 pages, 9 figures, presented at the 20th International Conference on
Ultra-Relativistic Nucleus-Nucleus Collisions, "Quark Matter 2008", Jaipur,
India, Feb.4-10, 200
Nonlinear Realization and Weyl Scale Invariant p=2 Brane
The action of Weyl scale invariant p=2 brane which breaks the target super
Weyl scale symmetry in the N=1, D=4 superspace down to the lower dimensional
Weyl symmetry W(1,2) is derived by the approach of nonlinear realization. The
dual form action for the Weyl scale invariant supersymmetric D2 brane is also
constructed. The interactions of localized matter fields on the brane with the
Nambu-Goldstone fields associated with the breaking of the symmetries in the
superspace and one spatial translation directions are obtained through the
Cartan one-forms of the Coset structures. The covariant derivatives for the
localized matter fields are also obtained by introducing Weyl gauge field as
the compensating field corresponding to the local scale transformation on the
brane world volume.Comment: 20 page
The Fermi surface of CeCoIn5: dHvA
Measurements of the de Haas - van Alphen effect in the normal state of the
heavy Fermion superconductor CeCoIn5 have been carried out using a torque
cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18
tesla. Angular dependent measurements of the extremal Fermi surface areas
reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or
CeIrIn5. The effective masses of the measured frequencies range from 9 to 20
m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid
Trace initial interaction from final state observable in relativistic heavy ion collisions
In order to trace the initial interaction in ultra-relativistic heavy ion
collision in all azimuthal directions, two azimuthal multiplicity-correlation
patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns
-- are suggested. From the simulation of Au + Au collisions at 200 GeV by using
the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without
string melting, we observe that the correlation patterns change gradually from
out-of-plane preferential one to in-plane preferential one when the centrality
of collision shifts from central to peripheral, meanwhile the anisotropic
collective flow v_2 keeps positive in all cases. This regularity is found to be
model and collision energy independent. The physics behind the two opposite
trends of correlation patterns, in particular, the presence of out-of-plane
correlation patterns at RHIC energy, are discussed.Comment: 5pages, 4figure
High transverse momentum suppression and surface effects in Cu+Cu and Au+Au collisions within the PQM model
We study parton suppression effects in heavy-ion collisions within the Parton
Quenching Model (PQM). After a brief summary of the main features of the model,
we present comparisons of calculations for the nuclear modification and the
away-side suppression factor to data in Au+Au and Cu+Cu collisions at 200 GeV.
We discuss properties of light hadron probes and their sensitivity to the
medium density within the PQM Monte Carlo framework.Comment: Comments: 6 pages, 8 figures. To appear in the proceedings of Hot
Quarks 2006: Workshop for Young Scientists on the Physics of
Ultrarelativistic Nucleus-Nucleus Collisions, Villasimius, Italy, 15-20 May
200
Anomalous NMR Magnetic Shifts in CeCoIn_5
We report ^{115}In and ^{59}Co Nuclear Magnetic Resonance (NMR) measurements
in the heavy fermion superconductor CeCoIn_5 above and below T_c. The hyperfine
couplings of the In and Co are anisotropic and exhibit dramatic changes below
50K due to changes in the crystal field level populations of the Ce ions. Below
T_c the spin susceptibility is suppressed, indicating singlet pairing.Comment: 4 pages, 4 figure
Deep coverage whole genome sequences and plasma lipoprotein(a) in individuals of European and African ancestries
Lipoprotein(a), Lp(a), is a modified low-density lipoprotein particle that contains apolipoprotein(a), encoded by LPA, and is a highly heritable, causal risk factor for cardiovascular diseases that varies in concentrations across ancestries. Here, we use deep-coverage whole genome sequencing in 8392 individuals of European and African ancestry to discover and interpret both single-nucleotide variants and copy number (CN) variation associated with Lp(a). We observe that genetic determinants between Europeans and Africans have several unique determinants. The common variant rs12740374 associated with Lp(a) cholesterol is an eQTL for SORT1 and independent of LDL cholesterol. Observed associations of aggregates of rare non-coding variants are largely explained by LPA structural variation, namely the LPA kringle IV 2 (KIV2)-CN. Finally, we find that LPA risk genotypes confer greater relative risk for incident atherosclerotic cardiovascular diseases compared to directly measured Lp(a), and are significantly associated with measures of subclinical atherosclerosis in African Americans
The Importance of Correlations and Fluctuations on the Initial Source Eccentricity in High-Energy Nucleus-Nucleus Collisions
In this paper, we investigate various ways of defining the initial source
eccentricity using the Monte Carlo Glauber (MCG) approach. In particular, we
examine the participant eccentricity, which quantifies the eccentricity of the
initial source shape by the major axes of the ellipse formed by the interaction
points of the participating nucleons. We show that reasonable variation of the
density parameters in the Glauber calculation, as well as variations in how
matter production is modeled, do not significantly modify the already
established behavior of the participant eccentricity as a function of collision
centrality. Focusing on event-by-event fluctuations and correlations of the
distributions of participating nucleons we demonstrate that, depending on the
achieved event-plane resolution, fluctuations in the elliptic flow magnitude
lead to most measurements being sensitive to the root-mean-square, rather
than the mean of the distribution. Neglecting correlations among
participants, we derive analytical expressions for the participant eccentricity
cumulants as a function of the number of participating nucleons,
\Npart,keeping non-negligible contributions up to \ordof{1/\Npart^3}. We
find that the derived expressions yield the same results as obtained from
mixed-event MCG calculations which remove the correlations stemming from the
nuclear collision process. Most importantly, we conclude from the comparison
with MCG calculations that the fourth order participant eccentricity cumulant
does not approach the spatial anisotropy obtained assuming a smooth nuclear
matter distribution. In particular, for the Cu+Cu system, these quantities
deviate from each other by almost a factor of two over a wide range in
centrality.Comment: 18 pages, 10 figures, submitted to PR
Localized f electrons in CexLa1-xRhIn5: dHvA Measurements
Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that
the Ce 4f electrons remain localized for all x, with the mass enhancement and
progressive loss of one spin from the de Haas-van Alphen signal resulting from
spin fluctuation effects. This behavior may be typical of antiferromagnetic
heavy fermion compounds, inspite of the fact that the 4f electron localization
in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR
- …