3,159 research outputs found

    Low-energy effective representation of the Gutzwiller-projected BCS Hamiltonian close to half filling

    Full text link
    We investigate analytically a connection between the t-J model and the strongly correlated Bardeen-Cooper-Schrieffer (BCS) Hamiltonian, with the effect of strong electron correlations accounted by the Gutzwiller projection. We show that in the immediate vicinity of half filling the projected 2D BCS Hamiltonian with strong pairing develops an antiferromagnetically (AF) ordered ground state. This result explicitly demonstrates that antiferromagnetism in this model appears as a natural consequence of the strong Coulomb repulsion in a low doped regime. At moderate doping the ground state of the Gutzwiller-projected BCS Hamiltonian becomes qualitatively similar to Anderson's resonating valence bond state which is known to fit nicely the properties of the t-J model in this regime. These two properties taken together indicate that the projected BCS Hamiltonian captures the essential low-energy physics of the t-J model in the whole underdoped region

    Modification and Assessment of the Bedside Pediatric Early Warning Score in the Pediatric Allogeneic Hematopoietic Cell Transplant Population

    Get PDF
    OBJECTIVES: To determine the validity of the Bedside Pediatric Early Warning Score system in the hematopoietic cell transplant population, and to determine if the addition of weight gain further strengthens the association with need for PICU admission. DESIGN: Retrospective cohort study of pediatric allogeneic hematopoietic cell transplant patients from 2009 to 2016. Daily Pediatric Early Warning Score and weights were collected during hospitalization. Logistic regression was used to identify associations between maximum Pediatric Early Warning Score or Pediatric Early Warning Score plus weight gain and the need for PICU intervention. The primary outcome was need for PICU intervention; secondary outcomes included mortality and intubation. SETTING: A large quaternary free-standing children's hospital. PATIENTS: One-hundred two pediatric allogeneic hematopoietic cell transplant recipients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Of the 102 hematopoietic cell transplant patients included in the study, 29 were admitted to the PICU. The median peak Pediatric Early Warning Score was 11 (interquartile range, 8-13) in the PICU admission cohort, compared with 4 (interquartile range, 3-5) in the cohort without a PICU admission (p < 0.0001). Pediatric Early Warning Score greater than or equal to 8 had a sensitivity of 76% and a specificity of 90%. The area under the receiver operating characteristics curve was 0.83. There was a high negative predictive value at this Pediatric Early Warning Score of 90%. When Pediatric Early Warning Score greater than or equal to 8 and weight gain greater than or equal to 7% were compared together, the area under the receiver operating characteristic curve increased to 0.88. CONCLUSIONS: In this study, a Pediatric Early Warning Score greater than or equal to 8 was associated with PICU admission, having a moderately high sensitivity and high specificity. This study adds to literature supporting Pediatric Early Warning Score monitoring for hematopoietic cell transplant patients. Combining weight gain with Pediatric Early Warning Score improved the discriminative ability of the model to predict the need for critical care, suggesting that incorporation of weight gain into Pediatric Early Warning Score may be beneficial for monitoring of hematopoietic cell transplant patients

    c-Src inhibition improves cardiovascular function but not remodeling or fibrosis in Ang II-induced hypertension

    Get PDF
    c-Src plays an important role in angiotensin II (Ang II) signaling. Whether this member of the Src family kinases is involved in the development of Ang II–induced hypertension and associated cardiovascular damage in vivo remains unknown. Here, we studied Ang II–infused (400 ng/kg/min) mice in which c-Src was partially deleted (c-Src+/−) and in wild-type (WT, c-Src+/+) mice treated with a c-Src inhibitor (CGP077675; 25 mg/kg/d). Ang II increased blood pressure and induced endothelial dysfunction in WT mice, responses that were ameliorated in c-Src+/− and CGP077675-treated mice. Vascular wall thickness and cross-sectional area were similarly increased by Ang II in WT and c-Src+/− mice. CGP077675 further increased cross-sectional area in hypertensive mice. Cardiac dysfunction (ejection fraction and fractional shortening) in Ang II–infused WT mice was normalized in c-Src+/− mice. Increased oxidative stress (plasma thiobarbituric acid–reactive substances, hydrogen peroxide, and vascular superoxide generation) in Ang II–infused WT mice was attenuated in c-Src–deficient and CGP077675-treated mice. Hyperactivation of vascular c-Src, ERK1/2 (extracellular signal–regulated kinase 1/2), and JNK (c-Jun N-terminal kinase) in hypertensive mice was normalized in CGP077675-treated and c-Src+/− mice. Vascular fibronectin was increased by Ang II in all groups and further augmented by CGP077675. Cardiac fibrosis and inflammation induced by Ang II were amplified in c-Src+/− and CGP-treated mice. Our data indicate that although c-Src downregulation attenuates development of hypertension, improves endothelial and cardiac function, reduces oxidative stress, and normalizes vascular signaling, it has little beneficial effect on fibrosis. These findings suggest a divergent role for c-Src in Ang II–dependent hypertension, where c-Src may be more important in regulating redox-sensitive cardiac and vascular function than fibrosis and remodeling

    Doped carrier formulation of the t-J model: the projection constraint and the effective Kondo-Heisenberg lattice representation

    Full text link
    We show that the recently proposed doped carrier Hamiltonian formulation of the t-J model should be complemented with the constraint that projects out the unphysical states. With this new important ingredient, the previously used and seemingly different spin-fermion representations of the t-J model are shown to be gauge related to each other. This new constraint can be treated in a controlled way close to half-filling suggesting that the doped carrier representation provides an appropriate theoretical framework to address the t-J model in this region. This constraint also suggests that the t-J model can be mapped onto a Kondo-Heisenberg lattice model. Such a mapping highlights important physical similarities between the quasi two-dimensional heavy fermions and the high-Tc_c superconductors. Finally we discuss the physical implications of our model representation relating in particular the small versus large Fermi surface crossover to the closure of the lattice spin gap.Comment: corrected and enlarged versio

    Roots of the affine Cremona group

    Full text link
    Let k[x_1,...,x_n] be the polynomial algebra in n variables and let A^n=Spec k[x_1,...,x_n]. In this note we show that the root vectors of the affine Cremona group Aut(A^n) with respect to the diagonal torus are exactly the locally nilpotent derivations x^a\times d/dx_i, where x^a is any monomial not depending on x_i. This answers a question due to Popov.Comment: 4 page

    Transient receptor potential melastatin 7 cation channel kinase new player in angiotensin II–induced hypertension

    Get PDF
    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg2+)/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase–deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg2+ was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P&lt;0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II–infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule–1 expression was increased in Ang II–infused TRPM7 kinase–deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II–treated groups. In TRPM7 kinase–deficient mice, Ang II–induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II–induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II–induced hypertension and associated vascular and target organ damage

    T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions.

    Get PDF
    T cells are the most abundant cell type found in afferent lymph, but their migration through lymphatic vessels (LVs) remains poorly understood. Performing intravital microscopy in the murine skin, we imaged T cell migration through afferent LVs in vivo. T cells entered into and actively migrated within lymphatic capillaries but were passively transported in contractile collecting vessels. Intralymphatic T cell number and motility were increased during contact-hypersensitivity-induced inflammation and dependent on ICAM-1/LFA-1 interactions. In vitro, blockade of endothelial cell-expressed ICAM-1 reduced T cell adhesion, crawling, and transmigration across lymphatic endothelium and decreased T cell advancement from capillaries into lymphatic collectors in skin explants. In vivo, T cell migration to draining lymph nodes was significantly reduced upon ICAM-1 or LFA-1 blockade. Our findings indicate that T cell migration through LVs occurs in distinct steps and reveal a key role for ICAM-1/LFA-1 interactions in this process
    • …
    corecore