26 research outputs found

    Nuevas técnicas de imagen en el estudio de la displasia cortical focal infantil: resonancia magnética de 3T con antena multicanal y PET-FDG

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Facultad de Medicina, Departamento de Anatomía, Hisotlogía y Neurociencia. Fecha de lectura:12 de Julio de 201

    Long-term quality assurance of fMRI and MRS on a 3.0T clinical scanner

    Get PDF
    Functional MRI (fMRI) and Magnetic Resonance Spectroscopy (MRS) are being increasingly used in clinical protocols. Subsequenly it is crucial to develop a routine quality assurance protocol (QA)of both techniques. This work describes a long-term variability study, as apart of the QA of fMRI and MRS on our institution clinical 3.0 T MR scanner

    Changes in the Papez Circuit in early stages of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common cause of demenMa. Neuronal and synapMc losses occur iniMally and predominantly in the medial temporal lobe structures including hippocampus, amygdala and thalamus, structures that belong to the Papez circuit. The integrity of the connecMons amongst them is essenMal for episodic memory, which is specifically impaired in AD. For this reason we have invesMgated the degeneraMon paRern of subcorMcal structures and its relaMon to early stages of AD, i.e. Mild CogniMve Impairment (MCI), both in the amnesic and mulMdomain types using structural magneMc resonance imaging (using a 3T GE scanner) and VBM‐DARTEL

    Refining memory assessment of elderly people with cognitive impairment:Insights from the short-term memory binding test

    Get PDF
    Alzheimer’s disease (AD) affects temporary memory for bound features more remarkably than for individual features. Such selective impairments manifest from presymptomatic through dementia stages via titration procedures. A recent study suggested that without titration and with high memory load the binding selectivity may disappear in people at risk of AD such as those with Mild Cognitive Impairment (MCI). We compared data from two studies on temporary binding which assessed people with MCI and controls using different memory loads (2 or 3 items). Selective binding impairments were found in MCI, but relative to controls, such selectivity was contingent upon memory load (i.e., present with 2 items). Further analysis with MCI people who tested positive to neuroimaging biomarkers (i.e., hippocampal atrophy) confirmed that this specific binding impairments are a feature of prodromal AD. The temporary binding task has been recently suggested by consensus papers as a potential screening tool for AD. The results presented here inform on task properties that can maximise the reliability of this new assessment tool for the detection of memory impairments in prodromal cases of AD

    Diffusion Tensor Imaging in Alzheimer's disease

    Full text link
    Attentional control and Information processing speed are central concepts in cognitive psychology and neuropsychology. Functional neuroimaging and neuropsychological assessment have depicted theoretical models considering attention as a complex and non-unitary process. One of its component processes, Attentional set-shifting ability, is commonly assessed using the Trail Making Test (TMT). Performance in the TMT decreases with increasing age in adults, Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Besides, speed of information processing (SIP) seems to modulate attentional performance. While neural correlates of attentional control have been widely studied, there are few evidences about the neural substrates of SIP in these groups of patients. Different authors have suggested that it could be a property of cerebral white matter, thus, deterioration of the white matter tracts that connect brain regions related to set-shifting may underlie the age-related, MCI and AD decrease in performance. The aim of this study was to study the anatomical dissociation of attentional and speed mechanisms. Diffusion tensor imaging (DTI) provides a unique insight into the cellular integrity of the brain, offering an in vivo view into the microarchitecture of cerebral white matter. At the same time, the study of ageing, characterized by white matter decline, provides the opportunity to study the anatomical substrates speeded or slowed information processing. We hypothesized that FA values would be inversely correlated with time to completion on Parts A and B of the TMT, but not the derived scores B/A and B-A

    Changes in resting-state functionally connected parieto-frontal networks after videogame practice

    Get PDF
    Neuroimaging studies provide evidence for organized intrinsic activity under task-free conditions. This activity serves functionally relevant brain systems supporting cognition. Here, we analyze changes in resting-state functional connectivity after videogame practice applying a test–retest design. Twenty young females were selected from a group of 100 participants tested on four standardized cognitive ability tests. The practice and control groups were carefully matched on their ability scores. The practice group played during two sessions per week across 4 weeks (16 h total) under strict supervision in the laboratory, showing systematic performance improvements in the game. A group independent component analysis (GICA) applying multisession temporal concatenation on test–retest resting-state fMRI, jointly with a dual-regression approach, was computed. Supporting the main hypothesis, the key finding reveals an increased correlated activity during rest in certain predefined resting state networks (albeit using uncorrected statistics) attributable to practice with the cognitively demanding tasks of the videogame. Observed changes were mainly concentrated on parietofrontal networks involved in heterogeneous cognitive functions

    Structural changes after videogame practice related to a brain network associated with intelligence

    Get PDF
    Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young females, twenty right handed participants were recruited for the study and assigned to a practice or a control group carefully matched by their general cognitive ability scores. After the first scan, the practice group played ‘Professor Layton and The Pandora's Box’ 4 h per week during four weeks. A second scan was obtained at the end of practice and intelligence was measured again. Image analyses revealed gray and white matter changes in the practice group. Gray matter changes theoretically relevant for intelligence were observed for the practice group mainly in frontal clusters (Brodmann areas 9 and 10) and also in smaller parietal and temporal regions. White matter findings were focused in the hippocampal cingulum and the inferior longitudinal fasciculus. These gray and white matter changes presumably induced by practice did not interact with intelligence tests' scores

    Clinically Isolated Syndromes Suggestive of Multiple Sclerosis: An Optical Coherence Tomography Study

    Get PDF
    Background: Optical coherence tomography (OCT) is a simple, high-resolution technique to quantify the thickness of retinal nerve fiber layer (RNFL), which provides an indirect measurement of axonal damage in multiple sclerosis (MS). This study aimed to evaluate RNFL thickness in patients at presentation with clinically isolated syndromes (CIS) suggestive of MS. Methodology: This was a cross-sectional study. Twenty-four patients with CIS suggestive of MS (8 optic neuritis [ON], 6 spinal cord syndromes, 5 brainstem symptoms and 5 with sensory and other syndromes) were prospectively studied. The main outcome evaluated was RNFL thickness at CIS onset. Secondary objectives were to study the relationship between RNFL thickness and MRI criteria for disease dissemination in space (DIS) as well as the presence of oligoclonal bands in the cerebrospinal fluid. Principal Findings: Thirteen patients had decreased RNFL thickness in at least one quadrant. Mean RNFL thickness was 101.67±10.72 Όm in retrobulbar ON eyes and 96.93±10.54 in unaffected eyes. Three of the 6 patients with myelitis had at least one abnormal quadrant in one of the two eyes. Eight CIS patients fulfilled DIS MRI criteria. The presence of at least one quadrant of an optic nerve with a RNFL thickness at a P<5% cut-off value had a sensitivity of 75% and a specificity of 56% for predicting DIS MRI. Conclusions: The findings from this study show that axonal damage measured by OCT is present in any type of CIS; even in myelitis forms, not only in ON as seen up to now. OCT can detect axonal damage in very early stages of disease and seems to have high sensitivity and moderate specificity for predicting DIS MRI. Studies with prospective long-term follow-up would be needed to establish the prognostic value of baseline OCT finding

    The role of low and high spatial frequencies in exogenous attention to biologically salient stimuli.

    Get PDF
    Exogenous attention can be understood as an adaptive tool that permits the detection and processing of biologically salient events even when the individual is engaged in a resource-consuming task. Indirect data suggest that the spatial frequency of stimulation may be a crucial element in this process. Behavioral and neural data (both functional and structural) were analyzed for 36 participants engaged in a digit categorization task in which distracters were presented. Distracters were biologically salient or anodyne images, and had three spatial frequency formats: intact, low spatial frequencies only, and high spatial frequencies only. Behavior confirmed enhanced exogenous attention to biologically salient distracters. The activity in the right and left intraparietal sulci and the right middle frontal gyrus was associated with this behavioral pattern and was greater in response to salient than to neutral distracters, the three areas presenting strong correlations to each other. Importantly, the enhanced response of this network to biologically salient distracters with respect to neutral distracters relied on low spatial frequencies to a significantly greater extent than on high spatial frequencies. Structural analyses suggested the involvement of internal capsule, superior longitudinal fasciculus and corpus callosum in this network. Results confirm that exogenous attention is preferentially captured by biologically salient information, and suggest that the architecture and function underlying this process are low spatial frequency-biased

    The Effect of the Normalization Strategy on Voxel-Based Analysis of DTI Images:A Pattern Recognition Based Assessment

    No full text
    Quantitative analysis on diffusion tensor imaging (DTI) has shown be useful in the study of disease-related degeneration. More and more studies perform voxel-by-voxel comparisons of fractional anisotropy (FA) values, aiming at detecting white matter alterations. Overall, there is no agreement about how the normalization stage should be performed. The purpose of this study was to evaluate the effect of the normalization strategy on voxel-based analysis of DTI images, using the performance of a classification approach as objective measure of normalization quality. This is achieved by using a Support Vector Machine (SVM) which constructs a decision surface that allows binary classification with two types of regions, generated after a statistical evaluation of the grey level values of regions detected as statistically significant in a FA analysis
    corecore