38 research outputs found

    Melatonin Non-Linearly Modulates Bull Spermatozoa Motility and Physiology in Capacitating and Non-Capacitating Conditions

    Get PDF
    [EN] Bull spermatozoa physiology may be modulated by melatonin. We washed ejaculated spermatozoa free of melatonin and incubated them (4 h, 38 °C) with 0-pM, 1-pM, 100-pM, 10-nM and 1-”M melatonin in TALP-HEPES (non-capacitating) and TALP-HEPES-heparin (capacitating). This range of concentrations encompassed the effects mediated by melatonin receptors (pM), intracellular targets (nM–”M) or antioxidant activity (”M). Treatment effects were assessed as motility changes by computer-assisted sperm analysis (CASA) of motility and physiological changes by flow cytometry. Melatonin effects were more evident in capacitating conditions, with 100 pM reducing motility and velocity (VCL) while increasing a “slow” subpopulation. All concentrations decreased apoptotic spermatozoa and stimulated mitochondrial activity in viable spermatozoa, with 100 pM–1 ”M increasing acrosomal damage, 10 nM–1 ”M increasing intracellular calcium and 1 pM reducing the response to a calcium-ionophore challenge. In non-capacitating media, 1 ”M increased hyperactivation-related variables and decreased apoptotic spermatozoa; 100 pM–1 ”M increased membrane disorders (related to capacitation); all concentrations decreased mitochondrial ROS production. Melatonin concentrations had a modal effect on bull spermatozoa, suggesting a capacitation-modulating role and protective effect at physiological concentrations (pM). Some effects may be of practical use, considering artificial reproductive techniquesSIThis research was funded by MINECO (Spain), Grant Number AGL2013-4332

    Transporters in the Mammary Gland—Contribution to Presence of Nutrients and Drugs into Milk

    Get PDF
    [EN] A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances—drugs, pesticides, carcinogens, environmental pollutants—which have undesirable effects on health. The transfer of these compounds into milk is unavoidably linked to the function of transport proteins. Expression of transporters belonging to the ATP-binding cassette (ABC-) and Solute Carrier (SLC-) superfamilies varies with the lactation stages of the mammary gland. In particular, Organic Anion Transporting Polypeptides 1A2 (OATP1A2) and 2B1 (OATP2B1), Organic Cation Transporter 1 (OCT1), Novel Organic Cation Transporter 1 (OCTN1), Concentrative Nucleoside Transporters 1, 2 and 3 (CNT1, CNT2 and CNT3), Peptide Transporter 2 (PEPT2), Sodium-dependent Vitamin C Transporter 2 (SVCT2), Multidrug Resistance-associated Protein 5 (ABCC5) and Breast Cancer Resistance Protein (ABCG2) are highly induced during lactation. This review will focus on these transporters overexpressed during lactation and their role in the transfer of products into the milk, including both beneficial and harmful compounds. Furthermore, additional factors, such as regulation, polymorphisms or drug-drug interactions will be described.S

    Flaxseed-enriched diets change milk concentration of the antimicrobial danofloxacin in sheep

    Get PDF
    8 p.Flaxseed is the most common and rich dietary source of lignans and is an acceptable supply of energy for livestock. Flaxseed lignans are precursors of enterolignans, mainly enterolactone and enterodiol, produced by the rumen and intestinal microbiota of mammals and have many important biological properties as phytoestrogens. Potential food-drug interactions involving flaxseed may be relevant for veterinary therapy, and for the quality and safety of milk and dairy products. Our aim was to investigate a potential food-drug interaction involving flaxseed, to explore whether the inclusion of flaxseed in sheep diet affects concentration of the antimicrobial danofloxacin in milkS

    Abcg2 transporter affects plasma, milk and tissue levels of meloxicam

    Get PDF
    33 p.ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 Όg·h/ml versus 73.80 ± 10.00 Όg·h/ml). Differences in meloxicam distribution were reported for several tissues, with a 20-fold higher concentration in the brain of Abcg2-/- compared to wild-type mice. Meloxicam secretion into milk was also affected by the transporter, with a 2.5-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice (0.58 ± 0.08 versus 0.23 ± 0.06). We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk. This study was supported by the research projects AGL2015-65626-R (MINECO/FEDER, UE) and RTI2018-100903-B-I00 (AEI/FEDER, UE); and by the predoctoral grants from the Ministry of Economy, Industry and Competitiveness (BES-2016-077235 grant to AMGL), and from Spanish Ministry of Education, Culture and Sport (FPU14/05131 grant to DGM AND FPU18/01559 grant to EBP); and the Junta de Castilla y Leon and European Regional Development Fund (Post-Doctoral Fellowship LE011P17 grant to IAF)

    Role of ABCG2 in secretion into milk of the anti-inflammatory flunixin and its main metabolite: in vitro-in vivo correlation in mice and cows

    Get PDF
    35 p.Flunixin meglumine is a nonsteroidal anti-inflammatory drug (NSAID) widely used in veterinary medicine. It is indicated to treat inflammatory processes, pain and pyrexia in farm animals. In addition, it is one of the few NSAIDs approved for use in dairy cows, and consequently gives rise to concern regarding its milk residues. The ABCG2 efflux transporter is induced during lactation in the mammary gland and plays an important role in the secretion of different compounds into milk. Previous reports have demonstrated that bovine ABCG2 Y581S polymorphism increases fluoroquinolone levels in cow milk. However, the implication of this transporter in the secretion into milk of anti-inflammatory drugs has not yet been studied. The objective of this work was to study the role of ABCG2 in the secretion into milk of flunixin and its main metabolite, 5-hydroxyflunixin, using Abcg2(-/-) mice, and to investigate the implication of the Y581S polymorphism in the secretion of these compounds into cow milk. Correlation with the in vitro situation was assessed by in vitro transport assays using MDCKII cells overexpressing murine and the two variants of the bovine transporter. Our results show that flunixin and 5-hydroxyflunixin are transported by ABCG2 and that this protein is responsible for their secretion into milk. Moreover, the Y581S polymorphism increases flunixin concentration into cow milk, but it does not affect milk secretion of 5-hydroxyflunixin. This result correlates with the differences in the in vitro transport of flunixin between the two bovine variants. These findings are relevant to the therapeutics of anti-inflammatory drug

    Abcg2 transporter affects plasma, milk and tissue levels of meloxicam

    Get PDF
    https://doi.org/10.1016/j.bcp.2020.113924ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2. After oral administration of meloxicam, the area under the plasma concentration-time curve in Abcg2-/- mice was 2-fold higher than in wild type mice (146.06 ± 10.57 Όg·h/ml versus 73.80 ± 10.00 Όg·h/ml). Differences in meloxicam distribution were reported for several tissues after oral and intravenous administration, with a 20-fold higher concentration in the brain of Abcg2-/- after oral administration. Meloxicam secretion into milk was also affected by the transporter, with a 2-fold higher milk-to-plasma ratio in wild-type compared with Abcg2-/- lactating female mice after oral and intravenous administration. We conclude that Abcg2 is an important determinant of the plasma and brain distribution of meloxicam and is clearly involved in its secretion into milk.S

    Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory

    No full text

    Erratum: Combined fit of spectrum and composition data as measured by the Pierre Auger Observatory

    No full text
    We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above 5 ⋅ 10(18) eV, i.e. the region of the all-particle spectrum above the so-called ankle feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results

    The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017)

    No full text
    corecore