25,655 research outputs found
The debate over the Cretaceous-Tertiary boundary
Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence
Possible world-wide middle miocene iridium anomaly and its relationship to periodicity of impacts and extinctions
In a study of one million years of Middle Miocene sediment deposition in ODP Hole 689B in the Weddell Sea near Antarctica, a single iridium (Ir) anomaly of 44 (+ or - 10) x 10 to the 12th gram Ir per gram rock (ppt) was observed in core 6H, section 3, 50 to 60 cm, after background contributions associated with manganese precipitates and clay are subtracted. The ODP Hole 689B is 10,000 km away from another site, DSDP Hole 588B in the Tasman Sea north of New Zealand, where a single Ir anomaly of 144 + or - 7 ppt over a background of 11 ppt was found in an earlier study of 3 million years of deposition. From chemical measurements the latter deposition was thought to be impact-related. Ir measurements were made, following neutron activation, with the Iridium Coincidence Spectrometer. The age vs depth calibration curves given in the DSDP and ODP preliminary reports indicate the ages of the Iranomalies are identical, 11.7 million years, but the absolute and relative uncertainties in the curves are not known. Based on the newest age data the age estimate is 10 million years. As the Ir was deposited at the two sites at about the same time and they are one quarter of the way around the world from each other it seems likely that the deposition was world-wide. The impact of a large asteroid or comet could produce the wide distribution, and this data is supportive of the impact relationship deduced for Deep Sea Drilling Project (DSDP) 588B from the chemical evidence. If the surface densities of Ir at the two sites are representative of the world-wide average, the diameter of a Cl type asteroid containing the necessary Ir would be 3 + or - 1 km, which is large enough to cause world-wide darkness and hence extinctions although the latter point is disputed
Gravitational Instantons from Gauge Theory
A gauge theory can be formulated on a noncommutative (NC) spacetime. This NC
gauge theory has an equivalent dual description through the so-called
Seiberg-Witten (SW) map in terms of an ordinary gauge theory on a commutative
spacetime. We show that all NC U(1) instantons of Nekrasov-Schwarz type are
mapped to ALE gravitational instantons by the exact SW map and that the NC
gauge theory of U(1) instantons is equivalent to the theory of hyper-Kaehler
geometries. It implies the remarkable consequence that ALE gravitational
instantons can emerge from local condensates of purely NC photons.Comment: 4 pages with two columns; comments and references added, to appear in
Phys. Rev. Let
Muon Detection of TeV Gamma Rays from Gamma Ray Bursts
Because of the limited size of the satellite-borne instruments, it has not
been possible to observe the flux of gamma ray bursts (GRB) beyond GeV energy.
We here show that it is possible to detect the GRB radiation of TeV energy and
above, by detecting the muon secondaries produced when the gamma rays shower in
the Earth's atmosphere. Observation is made possible by the recent
commissioning of underground detectors (AMANDA, the Lake Baikal detector and
MILAGRO) which combine a low muon threshold of a few hundred GeV or less, with
a large effective area of 10^3 m^2 or more. Observations will not only provide
new insights in the origin and characteristics of GRB, they also provide
quantitative information on the diffuse infrared background.Comment: Revtex, 12 pages, 3 postscript figures, uses epsfig.st
Monitoring luminous yellow massive stars in M33: new yellow hypergiant candidates
The evolution of massive stars surviving the red supergiant (RSG) stage
remains unexplored due to the rarity of such objects. The yellow hypergiants
(YHGs) appear to be the warm counterparts of post-RSG classes located near the
Humphreys-Davidson upper luminosity limit, which are characterized by
atmospheric instability and high mass-loss rates. We aim to increase the number
of YHGs in M33 and thus to contribute to a better understanding of the
pre-supernova evolution of massive stars. Optical spectroscopy of five
dust-enshrouded YSGs selected from mid-IR criteria was obtained with the goal
of detecting evidence of extensive atmospheres. We also analyzed BVI photometry
for 21 of the most luminous YSGs in M33 to identify changes in the spectral
type. To explore the properties of circumstellar dust, we performed SED-fitting
of multi-band photometry of the 21 YSGs. We find three luminous YSGs in our
sample to be YHG candidates, as they are surrounded by hot dust and are
enshrouded within extended, cold dusty envelopes. Our spectroscopy of star 2
shows emission of more than one H component, as well as emission of
CaII, implying an extended atmospheric structure. In addition, the long-term
monitoring of the star reveals a dimming in the visual light curve of amplitude
larger than 0.5 mag that caused an apparent drop in the temperature that
exceeded 500 K. We suggest the observed variability to be analogous to that of
the Galactic YHG Cas. Five less luminous YSGs are suggested as post-RSG
candidates showing evidence of hot or/and cool dust emission. We demonstrate
that mid-IR photometry, combined with optical spectroscopy and time-series
photometry, provide a robust method for identifying candidate YHGs. Future
discovery of YHGs in Local Group galaxies is critical for the study of the late
evolution of intermediate-mass massive stars.Comment: 24 pages, 12 figures, 7 Tables. A&A in pres
Inelastic electron-nucleus scattering and scaling at high inelasticity
Highly inelastic electron scattering is analyzed within the context of the
unified relativistic approach previously considered in the case of quasielastic
kinematics. Inelastic relativistic Fermi gas modeling that includes the
complete inelastic spectrum - resonant, non-resonant and Deep Inelastic
Scattering - is elaborated and compared with experimental data. A
phenomenological extension of the model based on direct fits to data is also
introduced. Within both models, cross sections and response functions are
evaluated and binding energy effects are analyzed. Finally, an investigation of
the second-kind scaling behavior is also presented.Comment: 39 pages, 13 figures; formalism extended and slightly reorganized,
conclusions extended; to appear in Phys. Rev.
Massive Hyper-Kahler Sigma Models and BPS Domain Walls
With the non-Abelian Hyper-Kahler quotient by U(M) and SU(M) gauge groups, we
give the massive Hyper-Kahler sigma models that are not toric in the N=1
superfield formalism. The U(M) quotient gives N!/[M! (N-M)!] (N is a number of
flavors) discrete vacua that may allow various types of domain walls, whereas
the SU(M) quotient gives no discrete vacua. We derive BPS domain wall solution
in the case of N=2 and M=1 in the U(M) quotient model.Comment: 16 pages, 1 figure, contribution to the Proceedings of the
International Conference on "Symmetry Methods in Physics (SYM-PHYS10)" held
at Yerevan, Armenia, 13-19 Aug. 200
Feynman Path Integral on the Noncommutative Plane
We formulate Feynman path integral on a non commutative plane using coherent
states. The propagator for a free particle exhibits UV cut-off induced by the
parameter of non commutativity.Comment: 7pages, latex 2e, no figures. Accepted for publication on J.Phys.
Detection of a Moving Rigid Solid in a Perfect Fluid
In this paper, we consider a moving rigid solid immersed in a potential
fluid. The fluid-solid system fills the whole two dimensional space and the
fluid is assumed to be at rest at infinity. Our aim is to study the inverse
problem, initially introduced in [3], that consists in recovering the position
and the velocity of the solid assuming that the potential function is known at
a given time. We show that this problem is in general ill-posed by providing
counterexamples for which the same potential corresponds to different positions
and velocities of a same solid. However, it is also possible to find solids
having a specific shape, like ellipses for instance, for which the problem of
detection admits a unique solution. Using complex analysis, we prove that the
well-posedness of the inverse problem is equivalent to the solvability of an
infinite set of nonlinear equations. This result allows us to show that when
the solid enjoys some symmetry properties, it can be partially detected.
Besides, for any solid, the velocity can always be recovered when both the
potential function and the position are supposed to be known. Finally, we prove
that by performing continuous measurements of the fluid potential over a time
interval, we can always track the position of the solid.Comment: 19 pages, 14 figure
The entropy of randomized network ensembles
Randomized network ensembles are the null models of real networks and are
extensivelly used to compare a real system to a null hypothesis. In this paper
we study network ensembles with the same degree distribution, the same
degree-correlations or the same community structure of any given real network.
We characterize these randomized network ensembles by their entropy, i.e. the
normalized logarithm of the total number of networks which are part of these
ensembles.
We estimate the entropy of randomized ensembles starting from a large set of
real directed and undirected networks. We propose entropy as an indicator to
assess the role of each structural feature in a given real network.We observe
that the ensembles with fixed scale-free degree distribution have smaller
entropy than the ensembles with homogeneous degree distribution indicating a
higher level of order in scale-free networks.Comment: (6 pages,1 figure,2 tables
- âŠ