3,534 research outputs found

    Verification of TG-61 dose for synchrotron-produced monochromatic x-ray beams using fluence-normalized MCNP5 calculations

    Get PDF
    Ion chamber dosimetry is being used to calibrate dose for cell irradiations designed to investigate photoactivated Auger electron therapy at the Louisiana State University CAMD synchrotron facility. This study performed a dosimetry intercomparison for synchrotron-produced monochromatic x-ray beams at 25 and 35 keV. Ion chamber depth-dose measurements in a PMMA phantom were compared with the product of MCNP5 Monte Carlo calculations of dose per fluence and measured incident fluence. Monochromatic beams of 25 and 35 keV were generated on the tomography beamline at CAMD. A cylindrical, air-equivalent ion chamber was used to measure the ionization created in a 10x10x10-cm3 PMMA phantom for depths from 0.6 to 7.7 cm. The American Association of Physicists in Medicine TG-61 protocol was applied to convert measured ionization into dose. Photon fluence was determined using a NaI detector to make scattering measurements of the beam from a thin polyethylene target at angles 30 degrees to 60 degrees. Differential Compton and Rayleigh scattering cross sections obtained from xraylib, an ANSI C library for x-ray-matter interactions, were applied to derive the incident fluence. MCNP5 simulations of the irradiation geometry provided the dose deposition per photon fluence as a function of depth in the phantom. At 25 keV the fluence-normalized MCNP5 dose overestimated the ion-chamber measured dose by an average of 7.2+/-3.0% to 2.1+/-3.0% for PMMA depths from 0.6 to 7.7 cm, respectively. At 35 keV the fluence-normalized MCNP5 dose underestimated the ion-chamber measured dose by an average of 1.0+/-3.4% to 2.5+/-3.4%, respectively. These results showed that TG-61 ion chamber dosimetry, used to calibrate dose output for cell irradiations, agreed with fluence-normalized MCNP5 calculations to within approximately 7% and 3% at 25 and 35 keV, respectively.Comment: 22 pages, 5 figure

    Evicting Slums, ‘Building Back Better’: Resiliency Revanchism and Disaster Risk Management in Manila

    Get PDF
    This article examines how the politics of managing global catastrophic risks plays out in a stereotypically ‘vulnerable’ megacity in the global South. It analyses the disproportionate impact of the 2009 Ondoy floods on Manila's underclasses as a consequence of the failures and partial successes of twentieth-century developmentalism, in the course of which the Philippine state facilitated a highly uneven distribution of disaster risk. It argues that the selective interpretation and omission of facts underpinned a disaster risk management (DRM) strategy premised on the eviction of slum dwellers. Through the lens of aesthetic governmentality we analyse how elite and expert knowledge produced a narrative of the slum as the source of urban flood risk via the territorial stigmatization of slums as blockages. We also show how the redescription of flood risk based on aesthetics produced uneven landscapes of risk, materializing in the ‘danger’/‘high-risk’-zone binary. This article characterizes the politics of the Metro Manila DRM strategy by introducing the concept of resiliency revanchism: a ‘politics of revenge’ predicated on the currency of DRM and ‘resiliency’, animated by historically entrenched prejudicial attitudes toward urban underclasses, and enabled by the selective interpretation, circulation and use of expertise

    A four-lidar view of Cirrus from the FIRE IFO: 27-28 October 1986

    Get PDF
    The four ground-based lidar systems that participated in the 1986 FIRE IFO were configured in a diamond-shaped array across central and southern Wisconsin. Data were generally collected in the zenith pointing mode, except for the Doppler lidar, which regularly operated in a scanning mode with intermittent zenith observations. As a component of the cirrus case study of 27 and 28 October 1986 selected for initial analysis, data collected by the remote sensor ensemble from 1600 (on the 27th) to 2400 UTC (on the 28th) is described and compared. In general, the cirrus studied on the 27th consisted of intermittent layers of thin and subvisual cirrus clouds. Particularly at Wausau, subvisual cirrus was detected from 11.0 to 11.5 km MSL, just below the tropopause. At lower levels, occasional cirrus clouds between approx. 8.0 to 9.5 km were detected from all ground sites. Preliminary analysis of the four-lidar dataset reveals the passage of surprisingly consistent cloud features across the experiment area. A variety of types and amounts of middle and high level clouds occurred, ranging from subvisual cirrus to deep cloud bands. It is expected that the ground-based lidar measurements from this case study, as well as the airborne observations, will provide an excellent data base for comparison to satellite observations

    Lidar cloud studies for FIRE and ECLIPS

    Get PDF
    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across

    Cirrus cloud properties derived from coincident GOES and lidar data during the 1986 FIRE Cirrus Intensive Field Observations (IFO)

    Get PDF
    One of the main difficulties in detecting cirrus clouds and determining their correct altitude using satellite measurements is their nonblackness. In the present algorithm (Rossow et al., 1985) used by the International Satellite Cloud Climatology Project (ISCCP), the cirrus cloud emissivity is estimated from the derived cloud reflectance using a theoretical model relating visible (VIS, 0.65 micron) optical depth to infrared (IR, 10.5 micron) emissivity. At this time, it is unknown how accurate this approach is or how the derived cloud altitude relates to the physical properties of the cloud. The First ISCCP Regional Experiment (FIRE) presents opportunities for determining how the observed radiances depend on the cloud properties. During the FIRE Cirrus Intensive Field Observations (IFO, see Starr, 1987), time series of cloud thickness, height, and relative optical densities were measured from several surface-based lidars. Cloud microphysics and radiances at various wavelengths were also measured simultaneously over these sites from aircraft at specific times during the IFO (October 19 to November 2, 1986). Satellite-observed radiances taken simultaneously can be matched with these data to determine their relationships to the cirrus characteristics. The first step is taken toward relating all of these variables to the satellite observations. Lidar-derived cloud heights are used to determine cloud temperatures which are used to estimate cloud emissivities from the satellite IR radiances. These results are then correlated to the observed VIS reflectances for various solar zenith angles

    Interpretation of cirrus cloud properties using coincident satellite and lidar data during the FIRE cirrus IFO

    Get PDF
    The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) provide an opportunity to examine the relationships between the satellite observed radiances and various parameters which describe the bulk properties of clouds, such as cloud amount and cloud top height. Lidar derived cloud altitude data, radiosonde data, and satellite observed radiances are used to examine the relationships between visible reflectance, infrared emittance, and cloud top temperatures for cirrus clouds

    The 27-28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data

    Get PDF
    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature

    Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    Get PDF
    Purpose: This work investigates the dose-response curves of GAFCHROMIC ® EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 × 10 × 10-cm3 polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3 of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy. © 2012 American Association of Physicists in Medicine
    • …
    corecore