563 research outputs found

    SYNTHESIS AND CHARACTERIZATION OF TOLUENE SULFONIC ACID (TSA)-DOPED POLYPYRROLE NANOPARTICLES: EFFECTS OF DOPANT CONCENTRATIONS

    Get PDF
    Nanoparticles of the conducting polymer polypyrrole in toluene sulfonic acid (PPy/TSA) were synthesized and characterized. The polymerization was process carried out in situ using ammonium persulfate (APS) as an oxidant. The particles were synthesized by varying the dopant concentration of para-toluene sulfonic acid over five sulphonic acid concentrations. The main objective of this study was to examine the effect of TSA dopant concentrations on the properties of polypyrrole nanoparticles. Understanding nature and characteristics of polypyrrole/TSA nanoparticles are important in determining whether the nanoparticles have the potential to be a component in the manufacture of fuel cells. The conducting polymer particles synthesized in this study were characterized using a particle analyzer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), spectroscopy UV-visible (UV-vis), thermogravimetric analysis (TGA) and electrical conductivity measurement. XRD shows that the particles generated possessed an amorphous structure, as also indicated by SEM images revealing the formation of aggregated and granular composite particles. Furthermore, the FTIR peak between 1273 and 1283cm-1 indicated that sulfonic acids (SO3-) groups were present in the structure of PPy. The size of the PPy/TSA nanoparticles was determined to be approximately 24-51 nm, and their conductivity measured to be 1.3 x 10-1 S/cm

    SYNTHESIS AND CHARACTERIZATION OF TOLUENE SULFONIC ACID (TSA)-DOPED POLYPYRROLE NANOPARTICLES: EFFECTS OF DOPANT CONCENTRATIONS

    Get PDF
    Nanoparticles of the conducting polymer polypyrrole in toluene sulfonic acid (PPy/TSA) were synthesized and characterized. The polymerization was process carried out in situ using ammonium persulfate (APS) as an oxidant. The particles were synthesized by varying the dopant concentration of para-toluene sulfonic acid over five sulphonic acid concentrations. The main objective of this study was to examine the effect of TSA dopant concentrations on the properties of polypyrrole nanoparticles. Understanding nature and characteristics of polypyrrole/TSA nanoparticles are important in determining whether the nanoparticles have the potential to be a component in the manufacture of fuel cells. The conducting polymer particles synthesized in this study were characterized using a particle analyzer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), spectroscopy UV-visible (UV-vis), thermogravimetric analysis (TGA) and electrical conductivity measurement. XRD shows that the particles generated possessed an amorphous structure, as also indicated by SEM images revealing the formation of aggregated and granular composite particles. Furthermore, the FTIR peak between 1273 and 1283cm-1 indicated that sulfonic acids (SO3-) groups were present in the structure of PPy. The size of the PPy/TSA nanoparticles was determined to be approximately 24-51 nm, and their conductivity measured to be 1.3 x 10-1 S/cm

    A case of endometrial carcinoma with age related hyperkyphosis treated with definitive radiotherapy

    Get PDF
    This report describes a simple brachytherapy procedure in a patient with endometrial cancer with age related hyperkyphosis.  Sixty-eight year-old postmenopausal woman with age related hyperkyphosis presented with endometrial carcinoma, and the patient was not operated on due to associated pelvic deformity. The patient received whole pelvic radiation followed by uterovaginal brachytherapy. Patient was supported with soft pillows to support her exaggerated anterior concavity during brachytherapy procedure and execution. The brachytherapy dose was 6 Gy per fraction per week for 3 weeks using image guidance. This is probably the first reported case of endometrial cancer with age related hyperkyphosis. In spite of the associated skeletal problems, a simple brachytherapy procedure is possible and provides good result.

    Architecture of the biofilm-associated archaic Chaperone-Usher pilus CupE from Pseudomonas aeruginosa

    Get PDF
    Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor β-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa

    Examining the impact of 11 long-standing health conditions on health-related quality of life using the EQ-5D in a general population sample

    Get PDF
    Objectives Health-related quality of life (HRQoL) measures have been increasingly used in economic evaluations for policy guidance. We investigate the impact of 11 self-reported long-standing health conditions on HRQoL using the EQ-5D in a UK sample. Methods We used data from 13,955 patients in the South Yorkshire Cohort study collected between 2010 and 2012 containing the EQ-5D, a preference-based measure. Ordinary least squares (OLS), Tobit and two-part regression analyses were undertaken to estimate the impact of 11 long-standing health conditions on HRQoL at the individual level. Results The results varied significantly with the regression models employed. In the OLS and Tobit models, pain had the largest negative impact on HRQoL, followed by depression, osteoarthritis and anxiety/nerves, after controlling for all other conditions and sociodemographic characteristics. The magnitude of coefficients was higher in the Tobit model than in the OLS model. In the two-part model, these four long-standing health conditions were statistically significant, but the magnitude of coefficients decreased significantly compared to that in the OLS and Tobit models and was ranked from pain followed by depression, anxiety/nerves and osteoarthritis. Conclusions Pain, depression, osteoarthritis and anxiety/nerves are associated with the greatest losses of HRQoL in the UK population. The estimates presented in this article should be used to inform economic evaluations when assessing health care interventions, though improvements can be made in terms of diagnostic information and obtaining longitudinal data

    Clinical neurophysiological interrogation of motor slowing: A critical step towards tuning adaptive deep brain stimulation.

    Get PDF
    OBJECTIVE: Subthalamic nucleus (STN) beta activity (13-30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson's disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. METHODS: STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. RESULTS: The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to ∼ 75% for 1 Hz, to ∼ 40% for 3 Hz deviation). CONCLUSIONS: Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. SIGNIFICANCE: A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS

    Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes

    Get PDF
    Ribosomal surveillance pathways scan for ribosomes that are transiently paused or terminally stalled owing to structural elements in mRNAs or nascent chain sequences. Some stalls in budding yeast are sensed by the GTPase Hbs1, which loads Dom34, a catalytically inactive member of the archaeo-eukaryotic release factor 1 superfamily. Hbs1–Dom34 and the ATPase Rli1 dissociate stalled ribosomes into 40S and 60S subunits. However, the 60S subunits retain the peptidyl-tRNA nascent chains, which recruit the ribosome quality control complex that consists of Rqc1–Rqc2–Ltn1–Cdc48–Ufd1–Npl4. Nascent chains ubiquitylated by the E3 ubiquitin ligase Ltn1 are extracted from the 60S subunit by the ATPase Cdc48–Ufd1–Npl4 and presented to the 26S proteasome for degradation. Failure to degrade the nascent chains leads to protein aggregation and proteotoxic stress in yeast and neurodegeneration in mice. Despite intensive investigations on the ribosome quality control pathway, it is not known how the tRNA is hydrolysed from the ubiquitylated nascent chain before its degradation. Here we show that the Cdc48 adaptor Vms1 is a peptidyl-tRNA hydrolase. Similar to classical eukaryotic release factor 1, Vms1 activity is dependent on a conserved catalytic glutamine. Evolutionary analysis indicates that yeast Vms1 is the founding member of a clade of eukaryotic release factor 1 homologues that we designate the Vms1-like release factor 1 clade
    • …
    corecore