3,728 research outputs found

    On the Expressive Power of 2-Stack Visibly Pushdown Automata

    Full text link
    Visibly pushdown automata are input-driven pushdown automata that recognize some non-regular context-free languages while preserving the nice closure and decidability properties of finite automata. Visibly pushdown automata with multiple stacks have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the concept of visibility further to obtain a rich automata class that can even express properties beyond the class of context-free languages. At the same time, their automata are closed under boolean operations, have a decidable emptiness and inclusion problem, and enjoy a logical characterization in terms of a monadic second-order logic over words with an additional nesting structure. These results require a restricted version of visibly pushdown automata with multiple stacks whose behavior can be split up into a fixed number of phases. In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown automata with two stacks) in their unrestricted form. We show that they are expressively equivalent to the existential fragment of monadic second-order logic. Furthermore, it turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt words with multiple nestings. Combining these results, we conclude that 2-stack visibly pushdown automata are not closed under complementation. Finally, we discuss the expressive power of B\"{u}chi 2-stack visibly pushdown automata running on infinite (nested) words. Extending the logic by an infinity quantifier, we can likewise establish equivalence to existential monadic second-order logic

    Polynomial Interrupt Timed Automata

    Full text link
    Interrupt Timed Automata (ITA) form a subclass of stopwatch automata where reachability and some variants of timed model checking are decidable even in presence of parameters. They are well suited to model and analyze real-time operating systems. Here we extend ITA with polynomial guards and updates, leading to the class of polynomial ITA (PolITA). We prove the decidability of the reachability and model checking of a timed version of CTL by an adaptation of the cylindrical decomposition method for the first-order theory of reals. Compared to previous approaches, our procedure handles parameters and clocks in a unified way. Moreover, we show that PolITA are incomparable with stopwatch automata. Finally additional features are introduced while preserving decidability

    A proof of strong normalisation using domain theory

    Get PDF
    Ulrich Berger presented a powerful proof of strong normalisation using domains, in particular it simplifies significantly Tait's proof of strong normalisation of Spector's bar recursion. The main contribution of this paper is to show that, using ideas from intersection types and Martin-Lof's domain interpretation of type theory one can in turn simplify further U. Berger's argument. We build a domain model for an untyped programming language where U. Berger has an interpretation only for typed terms or alternatively has an interpretation for untyped terms but need an extra condition to deduce strong normalisation. As a main application, we show that Martin-L\"{o}f dependent type theory extended with a program for Spector double negation shift.Comment: 16 page

    A framework for pathologies of message sequence charts

    Get PDF
    This is the post-print version of the final paper published in Information Software and Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.Context - It is known that a Message Sequence Chart (MSC) specification can contain different types of pathology. However, definitions of different types of pathology and the problems caused by pathologies are unclear, let alone the relationships between them. In this circumstance, it can be problematic for software engineers to accurately predict the possible problems that may exist in implementations of MSC specifications and to trace back to the design problems in MSC specifications from the observed problems of an implementation. Objective - We focus on generating a clearer view on MSC pathologies and building formal relationships between pathologies and the problems that they may cause. Method - By concentrating on the problems caused by pathologies, a categorisation of problems that a distributed system may suffer is first introduced. We investigate the different types of problems and map them to categories of pathologies. Thus, existing concepts related to pathology are refined and necessary concepts in the pathology framework are identified. Finally, we formally prove the relationships between the concepts in the framework. Results - A pathology framework is established as desired based on a restriction that considers problematic scenarios with a single undesirable event. In this framework, we define disjoint categories of both pathologies and the problems caused; the identified types of pathology are successfully mapped to the problems that they may cause. Conclusion - The framework achieved in this paper introduces taxonomies into and clarifies relationships between concepts in research on MSC pathologies. The taxonomies and relationships in the framework can help software engineers to predict problems and verify MSC specifications. The single undesirable event restriction not only enables a categorisation of pathological scenarios, but also has the potential practical benefit that a software engineer can concentrate on key problematic scenarios. This may make it easier to either remove pathologies from an MSC specification MM or test an implementation developed from MM for potential problems resulting from such pathologies

    Teachers developing assessment for learning: impact on student achievement

    Get PDF
    While it is generally acknowledged that increased use of formative assessment (or assessment for learning) leads to higher quality learning, it is often claimed that the pressure in schools to improve the results achieved by students in externally-set tests and examinations precludes its use. This paper reports on the achievement of secondary school students who worked in classrooms where teachers made time to develop formative assessment strategies. A total of 24 teachers (2 science and 2 mathematics teachers, in each of six schools in two LEAs) were supported over a six-month period in exploring and planning their approach to formative assessment, and then, beginning in September 1999, the teachers put these plans into action with selected classes. In order to compute effect sizes, a measure of prior attainment and at least one comparison group was established for each class (typically either an equivalent class taught in the previous year by the same teacher, or a parallel class taught by another teacher). The mean effect size was 0.32

    Regular Combinators for String Transformations

    Full text link
    We focus on (partial) functions that map input strings to a monoid such as the set of integers with addition and the set of output strings with concatenation. The notion of regularity for such functions has been defined using two-way finite-state transducers, (one-way) cost register automata, and MSO-definable graph transformations. In this paper, we give an algebraic and machine-independent characterization of this class analogous to the definition of regular languages by regular expressions. When the monoid is commutative, we prove that every regular function can be constructed from constant functions using the combinators of choice, split sum, and iterated sum, that are analogs of union, concatenation, and Kleene-*, respectively, but enforce unique (or unambiguous) parsing. Our main result is for the general case of non-commutative monoids, which is of particular interest for capturing regular string-to-string transformations for document processing. We prove that the following additional combinators suffice for constructing all regular functions: (1) the left-additive versions of split sum and iterated sum, which allow transformations such as string reversal; (2) sum of functions, which allows transformations such as copying of strings; and (3) function composition, or alternatively, a new concept of chained sum, which allows output values from adjacent blocks to mix.Comment: This is the full version, with omitted proofs and constructions, of the conference paper currently in submissio
    • …
    corecore