133 research outputs found

    Multi-Omics Analyses Detail Metabolic Reprogramming in Lipids, Carnitines, and Use of Glycolytic Intermediates between Prostate Small Cell Neuroendocrine Carcinoma and Prostate Adenocarcinoma.

    Get PDF
    As the most common cancer in men, prostate cancer is molecularly heterogeneous. Contributing to this heterogeneity are the poorly understood metabolic adaptations of the two main types of prostate cancer, i.e., adenocarcinoma and small cell neuroendocrine carcinoma (SCNC), the latter being more aggressive and lethal. Using transcriptomics, untargeted metabolomics and lipidomics profiling on LASCPC-01 (prostate SCNC) and LNCAP (prostate adenocarcinoma) cell lines, we found significant differences in the cellular phenotypes of the two cell lines. Gene set enrichment analysis on the transcriptomics data showed 62 gene sets were upregulated in LASCPC-01, while 112 gene sets were upregulated in LNCAP. ChemRICH analysis on metabolomics and lipidomics data revealed a total of 25 metabolite clusters were significantly different. LASCPC-01 exhibited a higher glycolytic activity and lower levels of triglycerides, while the LNCAP cell line showed increases in one-carbon metabolism as an exit route of glycolytic intermediates and a decrease in carnitine, a mitochondrial lipid transporter. Our findings pinpoint differences in prostate neuroendocrine carcinoma versus prostate adenocarcinoma that could lead to new therapeutic targets in each type

    Tribbles 2 pseudokinase confers enzalutamide resistance in prostate cancer by promoting lineage plasticity

    Get PDF
    Enzalutamide, a second-generation antiandrogen, is commonly prescribed for the therapy of advanced prostate cancer, but enzalutamide-resistant, lethal, or incurable disease invariably develops. To understand the molecular mechanism(s) behind enzalutamide resistance, here, we comprehensively analyzed a range of prostate tumors and clinically relevant models by gene expression array, immunohistochemistry, and Western blot, which revealed that enzalutamide-resistant prostate cancer cells and tumors overexpress the pseudokinase, Tribbles 2 (TRIB2). Inhibition of TRIB2 decreases the viability of enzalutamide-resistant prostate cancer cells, suggesting a critical role of TRIB2 in these cells. Moreover, the overexpression of TRIB2 confers resistance in prostate cancer cells to clinically relevant doses of enzalutamide, and this resistance is lost upon inhibition of TRIB2. Interestingly, we found that TRIB2 downregulates the luminal markers androgen receptor and cytokeratin 8 in prostate cancer cells but upregulates the neuronal transcription factor BRN2 (Brain-2) and the stemness factor SOX2 (SRY-box 2) to induce neuroendocrine characteristics. Finally, we show that inhibition of either TRIB2 or its downstream targets, BRN2 or SOX2, resensitizes resistant prostate cancer cells to enzalutamide. Thus, TRIB2 emerges as a potential new regulator of transdifferentiation that confers enzalutamide resistance in prostate cancer cells via a mechanism involving increased cellular plasticity and lineage switching

    Epigenomic profiling of prostate cancer identifies differentially methylated genes in TMPRSS2:ERG fusion-positive versus fusion-negative tumors

    Get PDF
    Background: About half of all prostate cancers harbor the TMPRSS2:ERG (T2E) gene fusion. While T2E-positive and T2E-negative tumors represent specific molecular subtypes of prostate cancer (PCa), previous studies have not yet comprehensively investigated how these tumor subtypes differ at the epigenetic level. We therefore investigated epigenome-wide DNA methylation profiles of PCa stratified by T2E status. Results: The study included 496 patients with clinically localized PCa who had a radical prostatectomy as primary treatment for PCa. Fluorescence in situ hybridization (FISH) "break-apart" assays were used to determine tumor T2E- fusion status, which showed that 266 patients (53.6 %) had T2E-positive PCa. The study showed global DNA methylation differences between tumor subtypes. A large number of differentially methylated CpG sites were identified (false-discovery rate [FDR] Q-value Conclusions: This study identified substantial differences in DNA methylation profiles of T2E-positive and T2E-negative tumors, thereby providing further evidence that different underlying oncogenic pathways characterize these molecular subtypes

    A phase II single-arm study of pembrolizumab with enzalutamide in men with metastatic castration-resistant prostate cancer progressing on enzalutamide alone.

    Get PDF
    BACKGROUND: Checkpoint inhibitors can induce profound anticancer responses, but programmed cell death protein-1 (PD-1) inhibition monotherapy has shown minimal activity in prostate cancer. A published report showed that men with prostate cancer who were resistant to the second-generation androgen receptor inhibitor enzalutamide had increased programmed death-ligand 1 (PD-L1) expression on circulating antigen-presenting cells. We hypothesized that the addition of PD-1 inhibition in these patients could induce a meaningful cancer response. METHODS: We evaluated enzalutamide plus the PD-1 inhibitor pembrolizumab in a single-arm phase II study of 28 men with metastatic castration-resistant prostate cancer (mprogressing on enzalutamide alone. Pembrolizumab 200 mg intravenous was given every 3 weeks for four doses with enzalutamide. The primary endpoint was prostate-specific antigen (PSA) decline of ≥50%. Secondary endpoints were objective response, PSA progression-free survival (PFS), time to subsequent treatment, and time to death. Baseline tumor biopsies were obtained when feasible, and samples were sequenced and evaluated for the expression of PD-L1, microsatellite instability (MSI), mutational and neoepitope burdens. RESULTS: Five (18%) of 28 patients had a PSA decline of ≥50%. Three (25%) of 12 patients with measurable disease at baseline achieved an objective response. Of the five responders, two continue with PSA and radiographic response after 39.3 and 37.8 months. For the entire cohort, median follow-up was 37 months, and median PSA PFS time was 3.8 months (95% CI: 2.8 to 9.9 months). Time to subsequent treatment was 7.21 months (95% CI: 5.1 to 11.1 months). Median overall survival for all patients was 21.9 months (95% CI: 14.7 to 28 .4 months), versus 41.7 months (95% CI: 22.16 to not reached (NR)) in the responders. Of the three responders with baseline biopsies, one had MSI high disease with mutations consistent with DNA-repair defects. None had detectable PD-L1 expression. CONCLUSIONS: Pembrolizumab has activity in mCRPC when added to enzalutamide. Responses were deep and durable and did not require tumor PD-L1 expression or DNA-repair defects. TRIAL REGISTRATION NUMBER: clinicaltrials.gov (NCT02312557)

    Radiographic progression with nonrising PSA in metastatic castration-resistant prostate cancer: post hoc analysis of PREVAIL.

    Get PDF
    Background Advanced prostate cancer is a phenotypically diverse disease that evolves through multiple clinical courses. PSA level is the most widely used parameter for disease monitoring, but it has well-recognized limitations. Unlike in clinical trials, in practice, clinicians may rely on PSA monitoring alone to determine disease status on therapy. This approach has not been adequately tested.Methods Chemotherapy-naive asymptomatic or mildly symptomatic men (n=872) with metastatic castration-resistant prostate cancer (mCRPC) who were treated with the androgen receptor inhibitor enzalutamide in the PREVAIL study were analyzed post hoc for rising versus nonrising PSA (empirically defined as >1.05 vs â©˝1.05 times the PSA level from 3 months earlier) at the time of radiographic progression. Clinical characteristics and disease outcomes were compared between the rising and nonrising PSA groups.Results Of 265 PREVAIL patients with radiographic progression and evaluable PSA levels on the enzalutamide arm, nearly one-quarter had a nonrising PSA. Median progression-free survival in this cohort was 8.3 months versus 11.1 months in the rising PSA cohort (hazard ratio 1.68; 95% confidence interval 1.26-2.23); overall survival was similar between the two groups, although less than half of patients in either group were still at risk at 24 months. Baseline clinical characteristics of the two groups were similar.Conclusions Non-rising PSA at radiographic progression is a common phenomenon in mCRPC patients treated with enzalutamide. As restaging in advanced prostate cancer patients is often guided by increases in PSA levels, our results demonstrate that disease progression on enzalutamide can occur without rising PSA levels. Therefore, a disease monitoring strategy that includes imaging not entirely reliant on serial serum PSA measurement may more accurately identify disease progression

    Effect of Visceral Disease Site on Outcomes in Patients With Metastatic Castration-resistant Prostate Cancer Treated With Enzalutamide in the PREVAIL Trial.

    Get PDF
    Background The Multinational Phase 3, Randomized, Double-Blind, Placebo-Controlled Efficacy and Safety Study of Oral MDV3100 in Chemotherapy-Naive Patients With Progressive Metastatic Prostate Cancer Who Have Failed Androgen Deprivation Therapy (PREVAIL) trial was unique as it included patients with visceral disease. This analysis was designed to describe outcomes for the subgroup of men from PREVAIL with specific sites of visceral disease to help clinicians understand how these patients responded to enzalutamide prior to chemotherapy.Patients and methods Prespecified analyses examined the coprimary endpoints of radiographic progression-free survival (rPFS) and overall survival (OS) only. All other efficacy analyses were post hoc. The visceral subgroup was divided into liver or lung subsets. Patients with both liver and lung metastases were included in the liver subset.Results Of the 1717 patients in PREVAIL, 204 (12%) had visceral metastases at screening (liver only or liver/lung metastases, n = 74; lung only metastases, n = 130). In patients with liver metastases, enzalutamide was associated with an improvement in rPFS (hazard ratio [HR], 0.44; 95% confidence interval [CI], 0.22-0.90) but not OS (HR, 1.04; 95% CI, 0.57-1.87). In patients with lung metastases only, the HR for rPFS (0.14; 95% CI, 0.06-0.36) and the HR for OS (0.59; 95% CI, 0.33-1.06) favored enzalutamide over placebo. Patients with liver metastases had worse outcomes than those with lung metastases, regardless of treatment. Enzalutamide was well tolerated in patients with visceral disease.Conclusions Enzalutamide is an active first-line treatment option for men with asymptomatic or mildly symptomatic chemotherapy-naive metastatic castration-resistant prostate cancer and visceral disease. Patients with lung-only disease fared better than patients with liver disease, regardless of treatment

    The 5-Hydroxymethylcytosine Landscape of Prostate Cancer

    Get PDF
    Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE: In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.publishedVersionPeer reviewe

    Epigenetic modulators as therapeutic targets in prostate cancer

    Get PDF
    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.info:eu-repo/semantics/publishedVersio
    • …
    corecore