29 research outputs found

    Laplacians on discrete and quantum geometries

    Get PDF
    We extend discrete calculus for arbitrary (pp-form) fields on embedded lattices to abstract discrete geometries based on combinatorial complexes. We then provide a general definition of discrete Laplacian using both the primal cellular complex and its combinatorial dual. The precise implementation of geometric volume factors is not unique and, comparing the definition with a circumcentric and a barycentric dual, we argue that the latter is, in general, more appropriate because it induces a Laplacian with more desirable properties. We give the expression of the discrete Laplacian in several different sets of geometric variables, suitable for computations in different quantum gravity formalisms. Furthermore, we investigate the possibility of transforming from position to momentum space for scalar fields, thus setting the stage for the calculation of heat kernel and spectral dimension in discrete quantum geometries.Comment: 43 pages, 2 multiple figures. v2: discussion improved, references added, minor typos correcte

    Quadritangent spheres

    No full text

    Division Ratios and Triangles

    No full text

    On the Orthocentric Quadrilateral

    No full text

    99.20 A projective Simson line

    No full text

    Bipolar harmonics on a circular drum

    No full text
    corecore