4,232 research outputs found

    Nonlinear Band Structure in Bose Einstein Condensates: The Nonlinear Schr\"odinger Equation with a Kronig-Penney Potential

    Full text link
    All Bloch states of the mean field of a Bose-Einstein condensate in the presence of a one dimensional lattice of impurities are presented in closed analytic form. The band structure is investigated by analyzing the stationary states of the nonlinear Schr\"odinger, or Gross-Pitaevskii, equation for both repulsive and attractive condensates. The appearance of swallowtails in the bands is examined and interpreted in terms of the condensates superfluid properties. The nonlinear stability properties of the Bloch states are described and the stable regions of the bands and swallowtails are mapped out. We find that the Kronig-Penney potential has the same properties as a sinusoidal potential; Bose-Einstein condensates are trapped in sinusoidal optical lattices. The Kronig-Penney potential has the advantage of being analytically tractable, unlike the sinusoidal potential, and, therefore, serves as a good model for experimental phenomena.Comment: Version 2. Fixed typos, added referenc

    Associations between congenital malformations and childhood cancer. A register-based case-control study.

    Get PDF
    This report describes a population-based case-control study that aimed to assess and quantify the risk of children with congenital malformations developing cancer. Three sources of data were used: the Victorian Cancer Register, the Victorian Perinatal Data Register (VPDR) and the Victorian Congenital Malformations/Birth Defects Register. Cases included all Victorian children born between 1984 and 1993 who developed cancer. Four controls per case, matched on birth date, were randomly selected from the VPDR. Record linkage between registers provided malformation data. A matched case-control analysis was undertaken. Of the 632 cancer cases, 570 (90.2%) were linked to the VPDR. The congenital malformation prevalence in children with cancer was 9.6% compared with 2.5% in the controls [odds ratio (OR) 4.5, 95% CI 3.1-6.7]. A strong association was found with chromosomal defects (OR=16.7, 95% CI 6.1-45.3), in particular Down's syndrome (OR=27.1, 95% CI 6.0-122). Most other birth defect groups were also associated with increased cancer risk. The increased risk of leukaemia in children with Down's syndrome was confirmed, and children with central nervous system (CNS) defects were found to be at increased risk of CNS tumours. The report confirms that children with congenital malformations have increased risks of various malignancies. These findings may provide clues to the underlying aetiology of childhood cancer, as congenital malformations are felt to be a marker of exposures or processes which may increase cancer risk. The usefulness of record linkage between accurate population-based registers in the epidemiological study of disease has also been reinforced

    Group projector generalization of dirac-heisenberg model

    Full text link
    The general form of the operators commuting with the ground representation (appearing in many physical problems within single particle approximation) of the group is found. With help of the modified group projector technique, this result is applied to the system of identical particles with spin independent interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin. This gives transparent insight into the physical contents of this hamiltonian, showing that formal generalizations with spin greater than 1/2 involve nontrivial additional physical assumptions.Comment: 10 page

    Atomic Scale Memory at a Silicon Surface

    Get PDF
    The limits of pushing storage density to the atomic scale are explored with a memory that stores a bit by the presence or absence of one silicon atom. These atoms are positioned at lattice sites along self-assembled tracks with a pitch of 5 atom rows. The writing process involves removal of Si atoms with the tip of a scanning tunneling microscope. The memory can be reformatted by controlled deposition of silicon. The constraints on speed and reliability are compared with data storage in magnetic hard disks and DNA.Comment: 13 pages, 5 figures, accepted by Nanotechnolog

    Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space

    Get PDF
    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with non-hierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent \gamma= 2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power-laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution figures is available at http://www.pks.mpg.de/~edugal

    Numerically improved computational scheme for the optical conductivity tensor in layered systems

    Full text link
    The contour integration technique applied to calculate the optical conductivity tensor at finite temperatures in the case of layered systems within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker band structure method is improved from the computational point of view by applying the Gauss-Konrod quadrature for the integrals along the different parts of the contour and by designing a cumulative special points scheme for two-dimensional Brillouin zone integrals corresponding to cubic systems.Comment: 17 pages, LaTeX + 4 figures (Encapsulated PostScript), submitted to J. Phys.: Condensed Matter (19 Sept. 2000

    Density Functional Theory for the Photoionization Dynamics of Uracil

    Full text link
    Photoionization dynamics of the RNA base Uracil is studied in the framework of Density Functional Theory (DFT). The photoionization calculations take advantage of a newly developed parallel version of a multicentric approach to the calculation of the electronic continuum spectrum which uses a set of B-spline radial basis functions and a Kohn-Sham density functional hamiltonian. Both valence and core ionizations are considered. Scattering resonances in selected single-particle ionization channels are classified by the symmetry of the resonant state and the peak energy position in the photoelectron kinetic energy scale; the present results highlight once more the site specificity of core ionization processes. We further suggest that the resonant structures previously characterized in low-energy electron collision experiments are partly shifted below threshold by the photoionization processes. A critical evaluation of the theoretical results providing a guide for future experimental work on similar biosystems

    Clebsch-Gordan Construction of Lattice Interpolating Fields for Excited Baryons

    Full text link
    Large sets of baryon interpolating field operators are developed for use in lattice QCD studies of baryons with zero momentum. Operators are classified according to the double-valued irreducible representations of the octahedral group. At first, three-quark smeared, local operators are constructed for each isospin and strangeness and they are classified according to their symmetry with respect to exchange of Dirac indices. Nonlocal baryon operators are formulated in a second step as direct products of the spinor structures of smeared, local operators together with gauge-covariant lattice displacements of one or more of the smeared quark fields. Linear combinations of direct products of spinorial and spatial irreducible representations are then formed with appropriate Clebsch-Gordan coefficients of the octahedral group. The construction attempts to maintain maximal overlap with the continuum SU(2) group in order to provide a physically interpretable basis. Nonlocal operators provide direct couplings to states that have nonzero orbital angular momentum.Comment: This manuscript provides an anlytical construction of operators and is related to hep-lat/0506029, which provides a computational construction. This e-print version contains a full set of Clebsch-Gordan coefficients for the octahedral grou

    On the classification of Kahler-Ricci solitons on Gorenstein del Pezzo surfaces

    Full text link
    We give a classification of all pairs (X,v) of Gorenstein del Pezzo surfaces X and vector fields v which are K-stable in the sense of Berman-Nystrom and therefore are expected to admit a Kahler-Ricci solition. Moreover, we provide some new examples of Fano threefolds admitting a Kahler-Ricci soliton.Comment: 21 pages, ancillary files containing calculations in SageMath; minor correction
    • …
    corecore