10,605 research outputs found

    Quench dynamics and non equilibrium phase diagram of the Bose-Hubbard model

    Full text link
    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulating phase. For large values of the final interaction strength the system approaches a distinctly non-equilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct non-equilibrium regimes is surprising given the non-integrability of the Bose-Hubbard model. We relate this phenomena to the role of quasi-particle interactions in the Mott insulating state

    Decay of super-currents in condensates in optical lattices

    Full text link
    In this paper we discuss decay of superfluid currents in boson lattice systems due to quantum tunneling and thermal activation mechanisms. We derive asymptotic expressions for the decay rate near the critical current in two regimes, deep in the superfluid phase and close to the superfluid-Mott insulator transition. The broadening of the transition at the critical current due to these decay mechanisms is more pronounced at lower dimensions. We also find that the crossover temperature below which quantum decay dominates is experimentally accessible in most cases. Finally, we discuss the dynamics of the current decay and point out the difference between low and high currents.Comment: Contribution to the special issue of Journal of Superconductivity in honor of Michael Tinkham's 75th birthda

    Superfluid-insulator transition in a moving system of interacting bosons

    Full text link
    We analyze stability of superfluid currents in a system of strongly interacting ultra-cold atoms in an optical lattice. We show that such a system undergoes a dynamic, irreversible phase transition at a critical phase gradient that depends on the interaction strength between atoms. At commensurate filling, the phase boundary continuously interpolates between the classical modulation instability of a weakly interacting condensate and the equilibrium quantum phase transition into a Mott insulator state at which the critical current vanishes. We argue that quantum fluctuations smear the transition boundary in low dimensional systems. Finally we discuss the implications to realistic experiments.Comment: updated refernces and introduction, minor correction

    Phase diagram of two-component bosons on an optical lattice

    Full text link
    We present a theoretical analysis of the phase diagram of two--component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using the new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition making it first order in extended regions of the phase diagram. For Mott states with even occupation we find that the competition between effective Heisenberg exchange and spin-dependent on--site interaction leads to an additional phase transition from a Mott insulator with no broken symmetries into a spin-ordered insulator

    Stress engineering at the nanometer scale: Two-component adlayer stripes

    Full text link
    Spontaneously formed equilibrium nanopatterns with long-range order are widely observed in a variety of systems, but their pronounced temperature dependence remains an impediment to maintain such patterns away from the temperature of formation. Here, we report on a highly ordered stress-induced stripe pattern in a two-component, Pd-O, adsorbate monolayer on W(110), produced at high temperature and identically preserved at lower temperatures. The pattern shows a tunable period (down to 16 nm) and orientation, as predicted by a continuum model theory along with the surface stress and its anisotropy found in our DFT calculations. The control over thermal fluctuations in the stripe formation process is based on the breaking/restoring of ergodicity in a high-density lattice gas with long-range interactions upon turning off/on particle exchange with a heat bath.Comment: 6 pages, 4 figure

    A model to estimate the lifetime health outcomes of patients with Type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS) Outcomes Model (UKPDS no. 68)

    Get PDF
    <i>Aims/hypothesis</i> The aim of this study was to develop a simulation model for Type 2 diabetes that can be used to estimate the likely occurrence of major diabetes-related complications over a lifetime, in order to calculate health economic outcomes such as quality-adjusted life expectancy. <i>Methods</i> Equations for forecasting the occurrence of seven diabetes-related complications and death were estimated using data on 3642 patients from the United Kingdom Prospective Diabetes Study (UKPDS). After examining the internal validity, the UKPDS Outcomes Model was used to simulate the mean difference in expected quality-adjusted life years between the UKPDS regimens of intensive and conventional blood glucose control. <i>Results</i> The models forecasts fell within the 95% confidence interval for the occurrence of observed events during the UKPDS follow-up period. When the model was used to simulate event history over patients lifetimes, those treated with a regimen of conventional glucose control could expect 16.35 undiscounted quality-adjusted life years, and those receiving treatment with intensive glucose control could expect 16.62 quality-adjusted life years, a difference of 0.27 (95% CI: –0.48 to 1.03). <i>Conclusions/interpretations</i> The UKPDS Outcomes Model is able to simulate event histories that closely match observed outcomes in the UKPDS and that can be extrapolated over patients lifetimes. Its validity in estimating outcomes in other groups of patients, however, remains to be evaluated. The model allows simulation of a range of long-term outcomes, which should assist in informing future economic evaluations of interventions in Type 2 diabetes

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    Hanbury Brown-Twiss Interferometry for Fractional and Integer Mott Phases

    Full text link
    Hanbury-Brown-Twiss interferometry (HBTI) is used to study integer and fractionally filled Mott Insulator (MI) phases in period-2 optical superlattices. In contrast to the quasimomentum distribution, this second order interferometry pattern exhibits high contrast fringes in the it insulating phases. Our detailed study of HBTI suggests that this interference pattern signals the various superfluid-insulator transitions and therefore can be used as a practical method to determine the phase diagram of the system. We find that in the presence of a confining potential the insulating phases become robust as they exist for a finite range of atom numbers. Furthermore, we show that in the trapped case the HBTI interferogram signals the formation of the MI domains and probes the shell structure of the system.Comment: 13 pages, 15 figure
    • …
    corecore