306 research outputs found

    Traces of the last earthquake sequence (1939-1944) along NAF from lacustrine sediments

    Full text link
    Understanding the irregularity of seismic cycles: A case study in Turke

    Development of paleoseismic trench logging and dating techniques: a case study on the Central North Anatolian Fault

    Full text link
    Understanding the irregularity of seismic cycles: A case study in Turke

    Dynamic Heterogeneity and DNA Methylation in Embryonic Stem Cells

    Get PDF
    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the “2i” signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation

    Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

    Get PDF
    Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure

    Immune profiling of rainbow trout (Oncorhynchus mykiss) exposed to Lactococcus garvieae: Evidence in asymptomatic versus symptomatic or vaccinated fish

    Get PDF
    Lactococcosis, caused by the Gram-positive bacterium Lactococcus garvieae, is a major concern in rainbow trout (Oncorhynchus mykiss) farms, which are regularly affected by outbreaks especially during the summer/fall months. In these farms, unvaccinated healthy and symptomatic fish can coexist with vaccinated fish. In the present study, innate (leukogram, serum lysozyme activity, peroxidase activity, antiprotease activity, bactericidal activity, total IgM and total proteins), and specific immune parameters (serum antibodies to L. garvieae) were assessed in unvaccinated adult rainbow trout naturally exposed to the pathogen, with or without evidence of clinical signs, or subjected to vaccination. Blood was drawn from all three groups, and blood smears were prepared. Bacteria were found in the blood smears of 70% of the symptomatic fish but not in any of the asymptomatic fish. Symptomatic fish showed lower blood lymphocytes and higher thrombocytes than asymptomatic fish (p ≤.05). Serum lysozyme and bactericidal activity did not vary substantially among groups; however, serum antiprotease and peroxidase activity were significantly lower in the unvaccinated symptomatic group than in the unvaccinated and vaccinated asymptomatic groups (p ≤.05). Serum total proteins and total immunoglobulin (IgM) levels in vaccinated asymptomatic rainbow trout were significantly higher than in unvaccinated asymptomatic and symptomatic groups (p ≤.05). Similarly, vaccinated asymptomatic fish produced more specific IgM against L. garvieae than unvaccinated asymptomatic and symptomatic fish (p ≤.05). This preliminary study provides basic knowledge on the immunological relationship occurring between the rainbow trout and L. garvieae, potentially predicting health outcomes. The approach we proposed could facilitate infield diagnostics, and several non-specific immunological markers could serve as reliable indicators of the trout's innate ability to fight infection

    Direct Measurement of Nuclear Dependence of Charged Current Quasielastic-like Neutrino Interactions using MINERvA

    Get PDF
    Charged-current νμ\nu_{\mu} interactions on carbon, iron, and lead with a final state hadronic system of one or more protons with zero mesons are used to investigate the influence of the nuclear environment on quasielastic-like interactions. The transfered four-momentum squared to the target nucleus, Q2Q^2, is reconstructed based on the kinematics of the leading proton, and differential cross sections versus Q2Q^2 and the cross-section ratios of iron, lead and carbon to scintillator are measured for the first time in a single experiment. The measurements show a dependence on atomic number. While the quasielastic-like scattering on carbon is compatible with predictions, the trends exhibited by scattering on iron and lead favor a prediction with intranuclear rescattering of hadrons accounted for by a conventional particle cascade treatment. These measurements help discriminate between different models of both initial state nucleons and final state interactions used in the neutrino oscillation experiments

    Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces

    Get PDF
    The recent proposal (M Planat and M Kibler, Preprint 0807.3650 [quantph]) of representing Clifford quantum gates in terms of unitary reflections is revisited. In this essay, the geometry of a Clifford group G is expressed as a BN-pair, i.e. a pair of subgroups B and N that generate G, is such that intersection H = B \cap N is normal in G, the group W = N/H is a Coxeter group and two extra axioms are satisfied by the double cosets acting on B. The BN-pair used in this decomposition relies on the swap and match gates already introduced for classically simulating quantum circuits (R Jozsa and A Miyake, Preprint arXiv:0804.4050 [quant-ph]). The two- and three-qubit steps are related to the configuration with 27 lines on a smooth cubic surface.Comment: 7 pages, version to appear in Journal of Physics A: Mathematical and Theoretical (fast track communications
    • …
    corecore