250 research outputs found

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Mean-field Matsubara dynamics: analysis of path-integral curvature effects in rovibrational spectra

    Get PDF
    It was shown recently that smooth and continuous ‘Matsubara’ phase-space loops follow a quantum-Boltzmann-conserving classical dynamics when decoupled from non-smooth distributions, which was suggested as the reason that many dynamical observables appear to involve a mixture of classical dynamics and quantum Boltz- mann statistics. Here we derive a mean-field version of this ‘Matsubara dynamics’ which sufficiently mitigates its serious phase problem to permit numerical tests on a two-dimensional ‘champagne-bottle’ model of a rotating OH bond. The Matsubara- dynamics rovibrational spectra are found to converge towards close agreement with the exact quantum results at all temperatures tested (200–800 K), the only significant discrepancies being a temperature-independent 22 cm−1 blue-shift in the position of the vibrational peak, and a slight broadening in its lineshape. These results are compared with centroid molecular dynamics (CMD) to assess the importance of non- centroid fluctuations. Above 250 K, only the lowest-frequency non-centroid modes are needed to correct small CMD red-shifts in the vibrational peak; below 250 K, more non-centroid modes are needed to correct large CMD red-shifts and broaden- ing. The transition between these ‘shallow curvature’ and ‘deep curvature’ regimes happens when imaginary-time Feynman paths become able to lower their actions by cutting through the curved potential surface, giving rise to artificial instantons in CMD.G.T. acknowledges a University of Cambridge Vice-Chancellor’s award and support from St. Catharine’s College, Cambridge. S.C.A. acknowledges funding from the UK Science and Engineering Research Council

    Are Saviour Siblings a Special Case in Procreative Ethics?

    Get PDF
    Children conceived in order to donate biological material to save the life of an already existing child are known as \u27saviour siblings\u27. The primary reasons that have been offered against the practice are: (i) creating a saviour sibling has negative impacts on the created child and (ii) creating a saviour child represents a wrongful procreative motivation of the parents. In this paper we examine to what extent the creation of saviour siblings actually presents a special case in procreative ethics. Although we do not deny that there is a unique feature present in the saviour sibling case—namely, that the child was created to save their sibling’s life, we argue that the distinctive feature of being a saviour sibling does not make the procreative act wrong. Our claim is that the features that would make the creation of a particular saviour sibling (im)permissible are the same features that would make the creation of any child (im)permissible. Our conclusion is that saviour siblings—in relation to the reasons for the (im)permissibility of their creation—are not a special case for procreative ethics

    Tunneling Splittings in Water Clusters from Path Integral Molecular Dynamics.

    Get PDF
    We present calculations of tunneling splittings in selected small water clusters, based on a recently developed path integral molecular dynamics (PIMD) method. The ground-rotational-state tunneling motions associated with the largest splittings in the water dimer, trimer, and hexamer are considered, and we show that the PIMD predictions are in very good agreement with benchmark quantum and experimental results. As the tunneling spectra are highly sensitive to both the details of the quantum dynamics and the potential energy surface, our calculations are a validation of the MB-Pol surface as well as the accuracy of PIMD. The favorable scaling of PIMD with system size paves the way for calculations of tunneling splittings in large, nonrigid molecular systems with motions that cannot be treated accurately by other methods, such as the semiclassical instanton

    Path-integral approximations to quantum dynamics

    Get PDF
    Abstract Imaginary-time path-integral or ‘ring-polymer’ methods have been used to simulate quantum (Boltzmann) statistical properties since the 1980s. This article reviews the more recent extension of such methods to simulate quantum dynamics, summarising the chain of approximations that links practical path-integral methods, such as centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD), to the exact quantum Kubo time-correlation function. We focus on single-surface Born–Oppenheimer dynamics, using the infrared spectrum of water as an illustrative example, but also survey other recent applications and practical techniques, as well as the limitations of current methods and their scope for future development. Graphic abstract </jats:sec
    • …
    corecore