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Abstract

We illustrate how path-integral molecular dynamics (PIMD) can be used to calculate ground-state

tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of

density matrix elements between the degenerate wells connected by the tunnelling. We propose a

simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully-

dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results

of diffusion Monte Carlo calculations.
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I. INTRODUCTION

The calculation of tunneling splittings allows non-equilibrium regions of a potential energy

surface to be compared with spectroscopic data [1–24]. This comparison is of particular

interest in water clusters, for which it is now possible to measure high resolution spectra

[25–33] of rearrangement tunnelling in clusters with three-dimensional hydrogen-bonded

structures, thus probing the intermolecular forces in water. Such systems are too large for

direct solution of the Schrödinger equation (which can treat only the water dimer [10–14]),

but can be addressed by two types of method in common use: diffusion Monte Carlo (DMC)

[5–9, 34–36] (and related projection-operator techniques [15, 16, 37, 38]), which is in principle

exact, and instanton theory [17–24, 39], which is a semiclassical approximation.

In DMC, one exploits the resemblance of the imaginary-time Schrödinger equation to a

diffusion equation, and uses Monte Carlo sampling to relax an initial distribution of walkers

into the ground state; the calculation scales approximately linearly with system size. To

calculate tunneling splittings, one needs to repeat this process for the first excited state,

which is possible if one can locate the nodal dividing surface, or a good approximation to

it (as is the case in malonaldehyde). However, in more complex ‘floppy’ systems, such as

water clusters, the nodal dividing surfaces can be difficult to locate, accurately.

The instanton approach [17–24, 39–43] is also an imaginary-time based method. The

tunnelling splitting is obtained from the ‘instanton’—the classical path in imaginary time

connecting the degenerate wells. The instanton is easy to find when the method is im-

plemented in Cartesian coordinates, where it reduces to a linear segment of a (fictitious)

‘ring-polymer’ (such as is used in path-integral quantum simulations); minimizing the ac-

tion is then equivalent to minimizing the (fictitious) energy of the linear polymer [22, 39].

This ‘ring-polymer instanton’ (RPI) method has been applied to a variety of water clus-

ters, where it has correctly predicted the order-of-magnitude and pattern of the splittings

[23, 24]. Instanton methods have limited accuracy, because they approximate the density

matrix elements by harmonic fluctuations around the minimum-action paths.

However, it is possible, at least in principle, to calculate the required matrix elements

exactly, thus obtaining a method which combines the advantages of DMC (an exact quantum,

linear scaling method) with RPI (which does not require the nodal surface). Methods

capable of evaluating the matrix elements using path-integral Monte Carlo (PIMC) or path-
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integral molecular dynamics (PIMD) [44–46] were developed some time ago, in applications

to one-dimensional model systems (PIMC) [47], crystal 3He (PIMC) [48, 49], and to electron

tunneling in proteins (PIMC) [50] and in Fe2+/Fe3+ (a combination of PIMC and PIMD)

[51]. Here, we investigate whether it is practical to use the PIMD version of this approach

to compute (ro)vibrational tunnelling splittings in molecules.

The paper is structured as follows. In Section II, we give the basic equations relating

the tunnelling splitting to the density-matrix elements (introduced by previous workers).

In Section III, we describe how to compute the matrix element ratios by PIMD, putting

forward a simple thermodynamic integration scheme in Section IV. In Section V we report

numerical applications, first to some simple 1-D examples, and then to the fully dimensional

malonaldehyde molecule. Section VI concludes the article.

II. RELATION OF THE TUNNELLING SPLITTING TO THE DENSITY MA-

TRIX FOR A DOUBLE-WELL SYSTEM

Here, we follow mostly the derivation outlined in Refs. [48, 49], pointing out such modifica-

tions as are necessary to apply it to tunnelling in a molecular system. The Hamiltonian of

an N -particle system in f spatial dimensions is

Ĥ =

fN
∑

i=1

1

2mi

p̂2i + V (r) (1)

and the corresponding thermal density operator is written as

ρ̂ = e−βĤ (2)

where 1/β = kBT is the temperature T multiplied by the Boltzmann constant kB.

First, we consider the coordinate representation of the quantum thermal density matrix

in terms of (bound-state) eigenvalues, En, and eigenfunctions, ψn, of the molecular Hamil-

tonian:

ρ(r, r′; β) =
∑

n

ψ∗

n(r)ψn(r
′)e−βEn . (3)
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We assume that the double-well system has a single symmetry operator, P̂ , which acts on

the Cartesian coordinates as r′ = P̂r = −r, and that the two lowest-energy eigenfunctions

are symmetric and antisymmetric with respect to P̂ : ψ0(r
′ = −r) = ψ0(r) and ψ1(r

′ =

−r) = −ψ1(r), respectively. Then, the density matrix elements connecting symmetry-

related end points also carry this phase information induced by P̂ :

ρ(r, r; β) = |ψ0(r)|2e−βE0 + |ψ1(r)|2e−βE1 + . . . (4)

ρ(r, P̂r; β) = ψ∗

0(r)ψ0(P̂r)e
−βE0 + ψ∗

1(r)ψ1(P̂r)e
−βE1 + . . .

= |ψ0(r)|2e−βE0 − |ψ1(r)|2e−βE1 + . . . . (5)

For low temperatures we may neglect the contribution of the higher-energy (n ≥ 2) states.

For sufficiently low temperature (“large β”, defined by β(E2 − E0) ≫ 1) we can write:

ρ(r, P̂r; β)

ρ(r, r; β)
≈ |ψ0(r)|2 e−βE0 − |ψ1(r)|2 e−βE1

|ψ0(r)|2 e−βE0 + |ψ1(r)|2 e−βE1

=
1− |α(r)|2 e−β∆E

1 + |α(r)|2 e−β∆E

=
1− e−∆E[β−β̄(r)]

1 + e−∆E[β−β̄(r)]

= tanh

(

1

2
∆E

[

β − β̄(r)
]

)

(6)

where we introduced the tunneling (energy) splitting

∆E = E1 − E0 (7)

and

β̄(r) =
2

∆E
ln|α(r)| with α(r) =

ψ1(r)

ψ0(r)
. (8)

β̄(r) is inversely proportional to the energy splitting and also carries information about the

relative amplitude of the eigenfunctions at r; it can be interpreted as the “tunneling time”,

i.e. the amount of (imaginary) time necessary for the system to tunnel between the wells

[48, 49].
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In principle, r is an arbitrary geometry at which the lowest two eigenfunctions have suf-

ficient amplitude to carry the phase change induced by the symmetry operator. In practice,

a simple and convenient choice of r is a structure near the equilibrium geometry of the PES.

In the special case that tanh
(

1
2
∆E(β − β̄(r))

)

≈ 1
2
∆E(β − β̄(r)), the splitting ∆E can be

directly calculated from the ratio ρ(r, P̂r; β)/ρ(r, r; β) evaluated at two different β values.

However, it is usually necessary to fit a hyperbolic tangent function to ρ(r, P̂r; β)/ρ(r, r; β)

as a function of β (which is what is done in the numerical tests of Sec. IV).

Clearly the use of Eq. (6) has much in common with the DMC method. However, as

mentioned in the Introduction, Eq. (6) has the major advantage that, unlike DMC, it does

not require knowledge of the entire nodal hypersurface of the upper state. Instead, it requires

one to know the effect of the symmetry operation P̂ on a single geometry r near to the

minimum of one of the wells. A disadvantage (with respect to DMC) is that Eq. (6) yields

only the splitting ∆E, whereas DMC yields also the zero-point energy.

III. CALCULATING THE DENSITY MATRIX ELEMENTS BY PIMD

The tunneling splitting ∆E can be obtained from Eq. (6) if the low-temperature behaviour

of the ratio of the density matrix elements is known. These elements and their corresponding

ratio can be calculated efficiently in the discretized path-integral formalism, which translates

the quantum mechanical problem to a classical phase-space integral of a hypothetical linear

polymer. In what follows we introduce the necessary expressions for the calculation of

these density-matrix elements with path integrals and outline the main elements of our

algorithm and numerical implementation. We develop the formalism neglecting the spin of

the particles, because the density matrix is used only as a mathematical and computational

tool, which gives access to the energy splitting through Eq. (6). The quantum statistical

weights of the physical particles can be assigned to the energy levels at the end of the

calculation. Then, a density matrix element is written in the position representation and

the resolution of the identity is inserted (M − 1) times

ρ(a, b; β) =

∫

. . .

∫

dr(1) . . . dr(M−1)ρ(a, r(1); βM) . . . ρ(r(M−1), b; βM) (9)
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with βM = β/M . Using Trotter’s theorem we can approximate the high-temperature (small

βM) density matrix as

ρ(r, r′; βM ) ≈
(

1

2π~2βM

)fN/2
(

fN
∏

i=1

mi

)1/2

exp

[

−βM
(

fN
∑

i=1

1

2
miω

2
M(ri − r′i)

2 +
1

2
(V (r) + V (r′))

)]

(10)

with ωM = 1/(~βM). By inserting Eq. (10) into Eq. (9), ρ(a, b; β) can be approximated as

ρ(a, b; β) ≈ ρM(a, b; β)

=

(

1

2π~2βM

)fNM/2
(

fN
∏

i=1

mi

)M/2

exp
[

−βM(V (r(0)) + V (r(M)))/2
]

∫

. . .

∫

dr(1) . . . dr(M−1) exp

[

−βM
{

M
∑

j=1

fN
∑

i=1

1

2
miω

2
M(r

(j)
i − r

(j−1)
i )2 +

M−1
∑

j=1

V (r(j))

}]

with r(0) = a and r(M) = b (11)

where in the large M limit the exact value is obtained, limM→∞ ρM(a, b; β) = ρ(a, b; β).

Furthermore, we can insert the identity

(

βM

2πµ
(j)
i

)1/2 ∞
∫

−∞

dp
(j)
i exp

[

−βM
(p

(j)
i )2

2µ
(j)
i

]

= 1, µ
(j)
i > 0 (12)

into Eq. (11) an arbitrary number of times. For later convenience, we introduce fN(M − 1)

new variables in the expression using Eq. (12) for i = 1, 2, . . . , fN and j = 1, 2, . . . ,M − 1,

and the density matrix element is written as

ρM(a, b; β) =
1

hfNM

(

fN
∏

i=1

2πm
1/2
i

βM

)(

fN
∏

i=1

M−1
∏

j=1

mi

µ
(j)
i

)1/2

∫

. . .

∫

dp(1) . . . dp(M−1)

∫

. . .

∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
a,b (p, r; βM )

]

, (13)

which, similarly to Eq. (11), is equal to ρ(a, b, β) in the M → ∞ limit. Equation (13)

is a phase-space integral for a hypothetical linear polymer described by the Hamiltonian
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H
[M−1]
a,b (p, r; βM) corresponding to fixed-end beads, at a and at b,

H
[M−1]
a,b (p, r; βM) = H[M−1]

a,b (p, r; βM) + V [M−1](r) + (V (a) + V (b))/2. (14)

H[M−1]
a,b (p, r; βM ) is the corresponding free linear-polymer Hamiltonian

H[M−1]
a,b (p, r; βM) =

fN
∑

i=1

[

M−1
∑

j=1

1

2µ
(j)
i

(p
(j)
i )2 +

M
∑

j=1

1

2
miω

2
M(r

(j)
i − r

(j−1)
i )2

]∣

∣

∣

∣

∣

r
(0) = a

r
(M) = b

=

fN
∑

i=1

[

M−1
∑

j=1

1

2µ
(j)
i

(p
(j)
i )2 +

M−1
∑

j=2

1

2
miω

2
M(r

(j)
i − r

(j−1)
i )2

+
1

2
miω

2
M(r

(1)
i − ai)

2 +
1

2
miω

2
M(bi − r

(M−1)
i )2

]

(15)

with ωM = 1/(~βM)

which contains (M−1) beads (copies of the system) connected by springs of a force constant

miω
2
M (i = 1, 2, . . . , fN). The sum of the potential energy of all the active beads is

V [M−1](r) =
M−1
∑

j=1

V (r(j)). (16)

The bead masses, µ
(j)
i (the Parrinello–Rahman “mass matrix” [46]), can be chosen arbitrarily

and certain choices are motivated by physical or computational arguments. A simple choice

is to have the same mass for all beads corresponding to the same degree of freedom and

equal or proportional to the physical mass of the corresponding particle µ
(1)
i = µ

(2)
i = . . . =

µ
(M−1)
i = µi = mi/µ̃i (i = 1, 2, . . . , fN) (with same mass scaling coefficient, µ̃i, introduced

for each degree of freedom). Another choice of bead masses is introduced in Sec. IVB, which

gives details of the numerical tests.
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IV. THERMODYNAMIC INTEGRATION OF THE DENSITY-MATRIX ELE-

MENT RATIO

The ratio of two elements of the density matrix necessary to calculate the energy splitting,

Eq. (6), using the discretized path-integral formalism, Eq. (13), is written as

ρ(a, b; β)

ρ(a,a; β)
≈ ρM(a, b; β)

ρM(a,a; β)

=

∫

. . .
∫

dp(1) . . . dp(M−1)
∫

. . .
∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
a,b (p, r; βM)

]

∫

. . .
∫

dp(1) . . . dp(M−1)
∫

. . .
∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
a,a (p, r; βM)

]

(for large M) (17)

In principle, Eq. (17) could be evaluated by using an approach similar to the free energy per-

turbation method [52] by calculating the exponentiated difference of the Hamiltonians over

a canonical ensemble corresponding to the parameters (a,a; β,M). However, this simple

approach is impractical unless b is very close to a, which is usually not true for structures

related by discrete symmetry operations. Instead, we use thermodynamic integration to

evaluate Eq. (17).

Since ρM(a, b; β) ≥ 0, we can define a free energy function

A(ξ; βM) = − 1

βM
ln ρM(a, b(ξ); β). (18)

Then, we can write

ρM(a, b; β)

ρM(a,a; β)
=
ρM(a, b(ξ1); β)

ρM(a, b(ξ0); β)

= exp [−βM(A(ξ1; βM )−A(ξ0; βM ))]

= exp [−βM∆A(ξ : ξ0 → ξ1; βM )] (19)

where ξ ∈ [ξ0, ξ1] is a reaction coordinate, which connects b(ξ0) = a with b(ξ1) = b along a

smooth path. In the simplest case ξ can be a linear interpolating function between a and

b. A more general choice of ξ might be the integrated path length [53].

In what follows, we develop the thermodynamic integral for the free energy difference
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∆A(ξ : ξ0 → ξ1; βM) = A(ξ1; βM)−A(ξ0; βM) and thereby for

− 1

βM
ln
ρM(a, b; β)

ρM(a,a; β)
= − 1

βM
ln
ρM(a, b(ξ1); β)

ρM(a, b(ξ0); β)

= ∆A(ξ : ξ0 → ξ1; βM ). (20)

To make the presentation more compact we introduce the shorthand notation

ρM(ξ; β) = ρM(a, b(ξ); β)

=

∫

. . .

∫

dp(1) . . . dp(M−1)

∫

. . .

∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
a,b(ξ) (p, r; βM )

]

=

∫

. . .

∫

dp(1) . . . dp(M−1)

∫

. . .

∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
ξ

]

. (21)

So, the free energy difference can be written as

∆A(ξ : ξ0 → ξ1; βM) =

ξ1
∫

ξ0

dξ′
∂A
∂ξ

(ξ′)

=

ξ1
∫

ξ0

dξ′

〈

∂H
[M−1]
ξ

∂ξ

〉

(ξ=ξ′)

=

ξ1
∫

ξ0

dξ′

〈

∂H
[M−1]
a,b(ξ) (p, r; βM)

∂ξ

∣

∣

∣

∣

∣

ξ=ξ′

〉

(a,b(ξ′);β,M)

(22)

where in the last step we reintroduced the fully detailed notation according to Eq. (21).

This result means that the change in the free energy, ∆A, corresponding to pulling one of

the ends of the linear polymer from b(ξ0) to b(ξ1) can be evaluated by integrating from ξ0

to ξ1 the potential of mean force (the expectation value of ∂H
[M−1]
a,b(ξ) /∂ξ over the ensembles

along the path). We can write out the derivative of the full linear-polymer Hamiltonian,

Eq. (14), as follows

∂H
[M−1]
a,b(ξ) (p, r; βM)

∂ξ

∣

∣

∣

∣

∣

ξ=ξ′

=

fN
∑

i=1

∂H
[M−1]
a,b(ξ) (p, r; βM)

∂r
(M)
i

∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

(23)

=

fN
∑

i=1

[

1

2

∂V

∂ri

∣

∣

∣

∣

r
(M)
i

(ξ′)

+miω
2
M

(

r
(M)
i (ξ′)− r

(M−1)
i

)

]

∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′
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where r(M)(ξ′) = b(ξ′) is a parameter of the Hamiltonian along the reaction path connecting

a and b. By inserting Eqs. (22) and (23) into Eq. (20) we obtain

− 1

βM
ln
ρM(a, b; β)

ρM(a,a; β)

=

ξ1
∫

ξ0

dξ′
fN
∑

i=1

1

2

∂V

∂ri

∣

∣

∣

∣

r
(M)
i

(ξ′)

∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

+

ξ1
∫

ξ0

dξ′
fN
∑

i=1

miω
2
M

〈

(

r
(M)
i (ξ′)− r

(M−1)
i

) ∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

〉

(a,b(ξ′);β,M)

(24)

The first term in Eq. (24) simplifies to

ξ1
∫

ξ0

dξ′
fN
∑

i=1

1

2

∂V

∂ri

∣

∣

∣

∣

r
(M)
i

(ξ′)

∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

=

ξ1
∫

ξ0

dξ′
1

2

∂V

∂ξ

∣

∣

∣

∣

ξ′
=

1

2
(V (b)− V (a))) = 0 (25)

if the initial and the final structure are related by a symmetry operation, b = P̂a, which

leaves the potential energy invariant, V (a) = V (P̂a). The second term in Eq. (24) can be

written as

ξ1
∫

ξ0

dξ′
fN
∑

i=1

miω
2
M

〈

(

r
(M)
i (ξ′)− r

(M−1)
i

) ∂r
(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

〉

(a,b(ξ′);β,M)

=

fN
∑

i=1

miω
2
M

ξ1
∫

ξ0

dξ′
∂r

(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

r
(M)
i (ξ′)−

fN
∑

i=1

miω
2
M

ξ1
∫

ξ0

dξ′
∂r

(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

〈

r
(M−1)
i

〉

(a,b(ξ′);β,M)

= K − 1

~2β2
M

ξ1
∫

ξ0

dξ

[

∂r̃(M)

∂ξ

]T
〈

r̃(M−1)
〉

(a,b(ξ);β,M)
(26)

where in the first step we note that r
(M)
i (ξ′) and ∂r

(M)
i /∂ξ give only a constant contribution to

the expectation value because the end-bead is fixed. To shorten the notation we introduced
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ξ
r(0) = r(M)(ξ0)

r(M−1)

⇒
ξ

r(0) r(M)(ξ′)

r(M−1)

⇒
ξ

r(0) r(M)(ξ′′)

r(M−1)

⇒
ξ

r(0) r(M)(ξ1)

r(M−1)

FIG. 1: The density matrix ratio, ρ(a, b;β)/ρ(a,a;β) is determined from the coordinates of the

last-but-one bead (red) upon pulling one end of the linear polymer from a to b, Eq. (28). The end

beads (black), r(0) = a and r(M)(ξ), are fixed in each simulation window (only four windows are

shown).

mass-weighted coordinates, r̃
(j)
i =

√
mir

(j)
i (i = 1, . . . , fN), and the constant K,

K =
1

~2β2
M

fN
∑

i=1

ξ1
∫

ξ0

dξ′
∂r̃

(M)
i

∂ξ

∣

∣

∣

∣

∣

ξ′

r̃
(M)
i (ξ′)

=
1

2~2β2
M

fN
∑

i=1

(b̃2i − ã2i ) =
1

2~2β2
M

fN
∑

i=1

(b̃
T
b̃− ãTã) = 0, (27)

where K = 0 holds for symmetry-related end points, since identical particles have the same

mass and the scalar product is invariant to rotation-inversion operations (ãi and b̃i label

mass-weighted coordinates, as introduced earlier, for the end points).

Using Eqs. (24)–(27) we can write the ratio of the density matrix elements, which connect

symmetry-related structures, as

ρM(a, b; β)

ρM(a,a; β)
= exp





1

~2βM

ξ1
∫

ξ0

dξ

[

∂r̃(M)

∂ξ

]T
〈

r̃(M−1)
〉

(a,b(ξ);β,M)





(with b = b(ξ1) = P̂a). (28)

This is our final working equation for the density matrix ratio. It is interesting to note

that the ratio depends on the position expectation value of just the last-but-one bead as the

last bead is pulled from structure a to the symmetry-related structure, b = P̂a (Figure 1).

This may lead to inefficient sampling statistics, and suggests that future work should look

for alternative integration pathways, which depend on the coordinates of all the beads. It

is also interesting to note that the contribution of the potential energy (gradient) to the

integral of the the potential of mean force, Eqs. (22) and (23), cancels for symmetry-related

end points.
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A. Path-integral molecular dynamics for the linear polymer

Using Eq. (28), the ratio of the density matrix elements is obtained from the expectation

value

〈

r
(M−1)
i

〉

(a,b(ξ);β,M)
=

1

ρM(a, b(ξ), β)

×
∫

. . .

∫

dp(1) . . . dp(M−1)

∫

. . .

∫

dr(1) . . . dr(M−1) r
(M−1)
i exp

[

−βMH [M−1]
a,b(ξ) (p, r; βM)

]

(29)

with

ρM(a, b(ξ), β)

=

∫

. . .

∫

dp(1) . . . dp(M−1)

∫

. . .

∫

dr(1) . . . dr(M−1) exp
[

−βMH [M−1]
a,b(ξ) (p, r; βM)

]

. (30)

This expectation value is evaluated using molecular dynamics sampling connected with, in

our present implementation, an Andersen thermostat [54] (i.e., randomly selecting p from

the Boltzmann distribution).

B. Integrating the equations of motion

The classical equations of motion corresponding to the linear-polymer Hamiltonian H
[M−1]
a,b(ξ) ,

Eq. (14), are integrated similarly to Eqs. (21)–(25) of ref. [55] but the ring-polymer normal

modes are replaced with those of the linear polymer (Appendix A). Similarly to ref. [55],

the total Hamiltonian is split into the exactly integrable parts of the free (linear) polymer

and the potential energy contribution.

In order to make the sampling more efficient, instead of using the linear-polymer Hamil-

tonian H
[M−1]
a,b(ξ) , Eq. (14), in Cartesian coordinates, we use a related Hamiltonian, which is

written in terms of the normal coordinates of the free linear polymer corresponding to the

fixed end beads, a and b,

H
[M−1]′

a,b(ξ) =

fN
∑

i=1

[

M−1
∑

j=1

1

2
(Π

(j)
i )2 +

M−1
∑

j=1

1

2
miω

2
Mλ

(j)(η
(j)
i )2

]

(31)
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where λ(j) and η
(j)
i are defined in Eqs. (A.10), (A.18) and Π

(j)
i are the corresponding normal-

coordinate momenta. This Hamiltonian differs from H
[M−1]
a,b(ξ) by a constant term, which is

dependent on the end-bead coordinates (if the coordinates of the end beads are zero, this

term is also zero), but it leads to equations of motion equivalent to those of the Cartesian

Hamiltonian (the coordinates are related by a linear transformation and the Jacobian is

unity). Next, we can introduce scaled normal coordinate momenta, Π̃
(j)
i

H̃
[M−1]′

a,b(ξ) =

fN
∑

i=1

[

M−1
∑

j=1

1

2M
(j)
i

(Π̃
(j)
i )2 +

M−1
∑

j=1

1

2
miω

2
Mλ

(j)(η
(j)
i )2

]

(32)

with some M
(j)
i > 0 “bead-dependent” masses. We choose

M
(j)
i = miω

2
Mλ

(j) = 4miω
2
M sin2

(

jπ

2M

)

(33)

and thus the scaled normal coordinates vibrate with the same angular frequency

Ω̃ = (Ω̃
(j)
i )2 =

1

M
(j)
i

miω
2
Mλ

(j) = 1. (34)

We are free to use the equations of motion corresponding to the scaled Hamiltonian of

Eq. (32) to sample the configuration space part of the integral, because the momentum

space part of the integral factorises out. The effect of this scaling is equivalent to using a

multiple time-step integration scheme for the equations of motions corresponding to Eqs. (14)

or (31). Therefore, we can evaluate 〈r(M−1)
i 〉a,b(ξ);β,M in Eq. (29) using the equations of mo-

tion of H̃
[M−1]′

a,b(ξ) , Eq. (32), to sample the integral more efficiently. At every time step the

coordinates of the last-but-one bead r
(M−1)
i are evaluated from the normal coordinates, η

(j)
i ,

using Eq. (A.19). The introduction of scaled bead masses in the normal mode representation

does not hinder us from working with analytic expressions for carrying out the transforma-

tion between the normal and the Cartesian coordinates, Eqs. (A.18)–(A.19), and it can be

evaluated efficiently for a large bead number using a fast sine-transform routine.
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FIG. 2: Ground and first-excited state wave functions (calculated variationally) for the delocalized

(Test 1) and localized (Test 2) one-dimensional double-well systems used to test the PIMD method.

The points a and P̂ a indicate the positions of the fixed end-beads of the linear polymer in the PIMD

simulations.

V. NUMERICAL RESULTS

A. One-dimensional test calculations

The linear-polymer path-integral molecular dynamics (PIMD) approach outlined in the pre-

vious sections was tested on one-dimensional model systems to allow comparison with the ex-

act quantum result. We consider two one-dimensional test cases: Test 1 with V (x) = (x2−1)2

and m = 1 and Test 2 with V (x) = 0.005(x2 − 1)2 and m = 1822.888 (we use atomic units

unless otherwise stated). Test 1 corresponds to a system in which the barrier penetration is

sufficient to delocalize the zero-point vibration above the barrier, and Test 2 to a system in

which the penetration is less, giving a localized probability density (see Fig. 2).

A series of PIMD simulations were carried out with various simulation parameters (num-

ber of beads, time step, simulation time, coupling strength with the Andersen thermostat,

etc.) to check the convergence properties of the method. Converged results for Test 1 (Ta-

ble I) were obtained using M = 30− 50 beads, Nξ = 5 Gauss–Legendre integration points,

simple Cartesian sampling (without mass scaling), a time step ∆t = 0.001, total simulation

time tmax = 105−106, and a coupling frequency of 1000−10000 for the Andersen thermostat.

More extensive tests were necessary for the Test 2 system, for which the greater degree of

localization made convergence more difficult; we used the values ofM and Nξ given in Table

II, used normal-mode sampling, with frequencies scaled to Ω̃ = 1 [see Eq. (34)], ∆t = 0.01,
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ρ(1, 1; β)/ρ(1,−1; β) ∆E β̄(1) ∣
∣

∣

Ψ1(1)
Ψ0(1)

∣

∣

∣

β [a.u.]: 3 4 5 10 [a.u.] [a.u.]

PIMD 1.39 1.16 1.07 1.00 0.79 0.70 1.32

variational 1.39 1.16 1.07 1.00 0.79 0.71 1.33

TABLE I: Ground-state tunneling splittings ∆E and tunnelling times β̄(1) calculated for the

one-dimensional ‘Test 1’ system by PIMD and variationally. Also shown are the wave function

amplitude ratios obtained from β̄(1) using Eq. (8). For comparison, the tunneling-splitting estimate

given by instanton theory [17, 22] is ∆E(RPI) = 1.6 a.u.

tmax = 106 a.u. and a coupling frequency of 1000 for the Andersen thermostat. In both sets

of simulations, the fixed end-points of the linear polymer, a = 1 and P̂ a = −1, were taken

to be the minima of the two wells. The inverse of the ρ(a, a; β)/ρ(a, P̂ a; β) values listed in

Tables I and II were used to fit Eq. (6) to obtain ∆E and β̄(a) in each row (here a = 1, and

thus β̄(1) is obtained). Tables I and II also provide the wave function ratio calculated from

Eq. (8), and compare with the variational results.

Tables I and II show that the PIMD splittings and ratios of the wave function amplitudes

are in excellent agreement with the variational results. However, as would be expected, it

is difficult to obtain tight convergence and high accuracy from the PIMD simulations. We

analyzed the sensitivity of the fitted energy splitting with respect to errors in the density

matrix ratios. The error in the datapoint corresponding to the largest β value has by far

the largest effect on the error of the fitted ∆E value; the lowest-β point is also important

(but less so). These two datapoints mainly fix the parameters of the hyperbolic tangent

function Eq. (6); errors in the datapoints of the intermediate β values have only a minor

effect. In addition, it is also important to point out that for larger β values it is more

computationally demanding to converge the PIMD simulations (most importantly, largerM

values are necessary). Therefore, in practice, an optimal β range has to be found: β has

to be large enough to sufficiently depopulate higher excited states in the sum, Eqs. (4)–(6),

whilst remaining as low as possible to minimize the costs of the PIMD simulation.

In numerically integrating the potential of mean force, we have tested the Gauss–Legendre

(GL) quadrature [56] and the Clenshaw–Curtis (CC) quadrature, first proposed in ref. [57].

The CC quadrature is a nested quadrature, which means that for special numbers of grid

points the full CC grid includes smaller CC grids, and thereby it allows for the direct

assessment of the error of the numerical integration from a single calculation, which is,
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ρ(1, 1; β)/ρ(1,−1; β) ∆E β̄(1) ∣
∣

∣

Ψ1(1)
Ψ0(1)

∣

∣

∣

β [a.u.]: 3000 3500 4000 4500 5000 10000 15000 20000 [10−5 a.u.] [a.u.]

PIMD(50,5) 12.0 9.70 8.34 7.20 6.26 3.10 2.21 1.72 6.78 400 1.01
PIMD(50,10) 11.5 9.48 7.94 7.01 6.05 2.88 1.99 1.70 7.28 475 1.02
PIMD(100,10) 11.7 9.46 7.94 6.86 5.99 2.77 1.98 1.51 8.16 898 1.04
PIMD(150,10) 11.7 9.45 7.91 6.90 5.99 2.78 1.96 1.50 8.26 939 1.04
PIMD(200,10) 11.7 9.44 7.92 6.72 5.99 2.75 1.91 1.53 8.24 892 1.04
PIMD(200,15) 11.7 9.42 7.87 6.85 6.00 2.77 1.91 1.52 8.28 926 1.04

variational 11.7 9.43 7.91 6.81 5.99 2.79 1.91 1.52 8.27 925 1.04

TABLE II: Ground-state tunneling splittings ∆E and tunnelling times β̄(1) calculated for the

one-dimensional ‘Test 2’ system by PIMD and variationally. Each row gives the ∆E obtained by

fitting Eq. (6) to the density-matrix ratios obtained on the left [where ‘PIMD(M ,Nξ)’ specifies

the number of beads and Gauss-Legendre integration points]. Also shown are the wave function

amplitude ratios obtained from β̄(1) using Eq. (8). For comparison, the tunneling-splitting estimate

given by instanton theory [17, 22] is ∆E(RPI) = 10−4 a.u.

in principle, an appealing feature. The GL quadrature provided quantitative or almost

quantitative results with already Nξ = 5 points, and Nξ = 10 or Nξ = 15 points were

sufficient in all test cases we considered. At the same time, it was always necessary to use

more than 15 − 20 points for the CC quadrature, and we had to use Nξ = 31 (or 61 grid

points) to obtain the desired accuracy (these specific values have been selected because they

include several smaller CC grids). Since, the overall cost of the computations scales linearly

with the number of grid points (number of independent simulations), we continued using

the GL quadrature with Nξ = 5− 10 points (and validated our choice by carrying out a few

computations with Nξ = 15− 20 GL quadrature points).

B. Malonaldehyde

As a more realistic test, we applied the PIMD method to malonaldehyde, explicitly including

all f×N = 3×9 = 27 Cartesian coordinates in the simulation. Tunneling in malonaldehyde

has a rich experimental [58–61] and theoretical [62–67] literature, but the focus here is on

testing the PIMD method for this system. All calculations used the potential energy surface

and fast analytic gradient routine recently published in ref. [68], which also gives the ground

state tunneling-splitting for this potential energy surface (obtained from fixed-node DMC

calculations).

In the PIMD calculations, the point r0 was taken to be the equilibrium geometry in the
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FIG. 3: The end-point geometries r0 and P̂r0 used in the PIMD tunneling-splitting calculations on

malonaldehyde (which correspond to the equilibrium geometries in the two wells in the principal

axis frame); P̂ = R̂y,π(O1O2)(C2C3)(H3H4). The Cartesian coordinates of r0 and P̂r0 are provided

in the Supplemental Material [69].

principal axis frame (see Fig. 3) with the center-of-mass at the origin, which ensured that

the density matrix elements were free from any translational contribution. To simplify the

calculation, we considered a single symmetry operation, P̂ , which was a pairwise exchange of

equivalent atoms in the skeleton followed by a 180o rotation around the y axis. Thereby, the

pair of structures r0 and P̂r0 (see Fig. 3) corresponds to the ‘proton jump’ (and relaxation of

the skeleton to the equilibrium structure). With this definition of the end points, we assume

that the rotational contributions in the nominator and denominator of Eq. (6) factorize and

cancel and we obtain a good approximation of the exact splitting for rotational quantum

number J = 0. The full treatment of the rotation-inversion-permutation symmetry is left

for future work.

Numerical results are presented in Table III obtained using the following simulation

parameters. In order to converge the propagator ratios within ca. 10 %, we used M =

50 − 175 beads (M = 50 − 100 was sufficient for β = 3000 but M = 150 was necessary for

β = 5000). The potential of mean force was integrated numerically over a Gauss–Legendre

quadrature with Nξ = 10 − 20. The dynamical equations were integrated in the scaled

normal-mode representation (with Ω̃ = 1) with a time step of ∆t = 0.005 − 0.01 a.u. for a

total simulation time of tmax = 1·105−2·105 a.u. (2−5 ps) coupled to an Andersen thermostat

with a collision frequency of 1000. Data collection began after an initial equilibration time

of 10 % (or up to 50%) of the total simulation time (longer for larger β values and for

end-points over the potential-energy-barrier corresponding to the middle windows of the
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ρ(r0, r0; β)/ρ(r0, P̂r0; β) ∆E β̄(r0)
∣

∣

∣

Ψ−(r0)
Ψ+(r0)

∣

∣

∣

β [a.u.]: 3000 3500 4000 4500 5000 [cm−1] [a.u.]

PIMD, Fit-1 12.0 9.4 7.8 19.9 1.2 · 103 1.05
12.1 9.8 8.0 18.8 1.1 · 103 1.05

19.4(5) 1150(50) 1.05(0)

PIMD, Fit-2 12.0 9.4 7.8 6.4 21.4 1.3 · 103 1.07
12.1 9.8 8.0 6.8 19.2 1.1 · 103 1.05

20.3(11) 1200(100) 1.06(1)

PIMD, Fit-3 12.0 9.4 7.8 6.4 5.6 21.5 1.3 · 103 1.07
12.1 9.8 8.0 6.8 6.0 19.0 1.1 · 103 1.05

20.3(13) 1200(100) 1.06(1)

PIMD, Fit-4 9.4 7.8 6.4 22.3 1.4 · 103 1.07
9.8 8.0 6.8 20.1 1.3 · 103 1.06

21.2(11) 1350(50) 1.07(1)

PIMD, Fit-5 9.4 7.8 6.4 5.6 21.9 1.4 · 103 1.07
9.8 8.0 6.8 6.0 19.3 1.2 · 103 1.05

20.6(13) 1300(100) 1.06(1)

DMC [68] 21.0(4)

TABLE III: Tunnelling splittings ∆E of the rovibrational ground state of malonaldehyde calculated

by PIMD using the PES of ref. [68]. Each value of ∆E and β̄(r0) was obtained by fitting Eq. (6)

to the set of density-matrix ratios listed in the same row (labeled as Fit-n). The relative amplitude

of the eigenfunctions is calculated from β̄(r0) using Eq. (8). An estimate of the sampling error is

indicated by the upper and lower values for each dataset and is obtained by taking the deviation

from the mean of the results obtained from the two datasets (see text for more details).

thermodynamic integration). We plan to improve the sampling efficiency (especially for the

intermediate windows of the numerical integral) in later work, and therefore the error bounds

reported in the Table correspond to the sampling uncertainty of these simulation windows

(and are not derived from a rigorous statistical analysis). Within these uncertainties, the

tunneling splittings obtained are in good agreement with the DMC result [68].

As to the computational efficiency of the PIMD simulations, approximately 107 MD

integration steps for 1.5 · 102 beads in 10 thermodynamic integration windows (along a

linearly interpolating reaction coordinate between the end structures) were carried out for

at least two different β values to obtain each value of ∆E in Table III. This corresponds

to a total number of 6× 1010 potential energy gradient evaluations (there are two gradient

evaluations in each MD integration step [55]). An energy gradient evaluation using the fast
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analytic gradient routines of ref. [68] took only approximately twice as long as a single-

point energy evaluation, which made our simulations possible within a reasonable amount

of computing time.

In comparison, DMC calculations [68] on the same potential energy surface used 5× 103

walkers for 5.5 × 105 a.u. total (equilibration plus sampling) time with a (shortest) time

step of 1 a.u. These calculations for both the ground and the excited state corresponded to

a total number of 2× 2.75× 109 = 5.5× 109 potential energy evaluations. Extrapolation to

zero time step from a series of simulations and consideration of the fixed-node error allowed

the authors to pinpoint a final error of 0.4 cm−1 for the ground-state tunneling splitting.

Hence, the PIMD results of Table III were approximately 10 times as expensive as DMC,

and gave an error that was roughly three times larger.

VI. SUMMARY AND OUTLOOK

Test calculations on malonaldehyde including all 27 atomic degrees of freedom have

demonstrated that PIMD is certainly a feasible method for calculating tunnelling split-

tings in molecules and clusters, but that, as currently implemented, it is less efficient than

DMC, requiring ten times as many potential energy evaluations to converge the splittings to

within three times the statistical error (as recent DMC calculations on the same surface [68]).

Hence, in systems for which the nodal surface is known to a good approximation (e.g. mal-

onaldehyde), it makes sense to use DMC to calculate the tunnelling splittings. However, in

systems for which the nodal surface is difficult to determine (e.g. water clusters), the extra

numerical effort required by PIMD may be a price worth paying.

In addition, it may be possible to improve the numerical efficiency of PIMD tunnelling

splitting calculations. As currently implemented, the ratios of density matrix elements

are computed by thermodynamic integration, along a pathway in which only one of the

coordinates of one of the beads contributes to the statistical averages. Pathways with a

more evenly distributed dependence on the beads might therefore lead to more efficient

sampling, as might the use of umbrella integration [70], or suitably adapted versions of

transition-path sampling [71] or metadynamics [72].

One can also expect that the PIMD method will become more efficient for facile tun-

nelling motions (e.g. the acceptor tunneling motion in water dimer), where less free energy
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is required to pull the linear polymer over the barrier, and where instanton methods such

as RPI break down (since the fluctuations around the minimum-action paths are not then

well described to second order). In this sense, the PIMD and RPI methods complement one

another.

Additional further areas of development of the PIMD method could include extending

it to treat tunnelling between multiple wells (which has been done already for instantons

in the RPI method [23]), and relaxing the assumption that vibration-rotation coupling can

be neglected. A generalization of this double-well approach to higher-order discrete and

continuous symmetries is presented in Ref. [73].
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Appendix A: Normal modes of the linear polymer

The equations of motion corresponding to the free linear-polymer Hamiltonian,

H
[M−1]
a,b (p, r; βM) or for short H [M−1], Eq. (15), with equal bead masses, µi = µ

(1)
i = . . . =

µ
(M−1)
i , are

ṙ
(j)
i =

∂H [M−1]

∂p
(j)
i

=
1

µi

p
(j)
i ⇒ µiṙ

(j)
i = p

(j)
i (A.1)

and

ṗ
(j)
i = −∂H

[M−1]

∂r
(j)
i

= −
[

miω
2
M(r

(j)
i − r

(j−1)
i )−miω

2
M(r

(j+1)
i − r

(j)
i )
]

(A.2)

with j = 1, 2, . . . ,M − 1, i = 1, 2, . . . , fN and with the fixed ends, r
(0)
i = ai and r

(M)
i = bi.

µir̈
(j)
i = −miω

2
M(2r

(j)
i − r

(j+1)
i − r

(j−1)
i )

r̈
(j)
i = −mi

µi

ω2
M(2r

(j)
i − r

(j+1)
i − r

(j−1)
i )

r̈
(j)
i = −ω̃2

M(2r
(j)
i − r

(j+1)
i − r

(j−1)
i ) with

[

r
(0)
i = ai and r

(M)
i = bi

]

(A.3)

where ω̃M = µ̃1/2ωM was introduced with µ̃ = mi/µi, which is chosen to be the same for all

i = 1, 2, . . . , fN .

By including the coordinates of the fixed end points explicitly, the equations of motion

are

r̈
(1)
i = −ω̃2

M(2r
(1)
i − r

(2)
i − ai) (j = 1) (A.4)

r̈
(j)
i = −ω̃2

M(2r
(j)
i − r

(j+1)
i − r

(j−1)
i ) (j = 2, . . . ,M − 2) (A.5)

r̈
(M−1)
i = −ω̃2

M(2r
(M−1)
i − bi − r

(M−2)
i ) (j =M − 1), (A.6)
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which can be rearranged to








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i
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(A.7)

r̈
(.)
i + ω̃2

MAr
(.)
i = ω̃2

Mc
(.)
i (A.8)

where r
(.)
i denotes a vector, which collects all (active) bead coordinates corresponding to ith

degree of freedom, r
(.)
i

T
= (r

(1)
i , r

(2)
i , . . . , r

(M−1)
i ) and A ∈ R

(M−1)×(M−1), and c
(.)
i ∈ R

M−1

are defined by Eqs. (A.7)–(A.8).

The eigenvalues and the normalized eigenvectors of A can be calculated analytically and

they are given here without derivation (the solution is similar to that of the Hückel problem

of linear polyenes). OTAO = Λ, (Λ)kj = δkjλ
(j) with

Okj =

√

2

M
sin

(

kjπ

M

)

j, k = 1, 2, . . . ,M − 1 (A.9)

and

λ(j) = 4 sin2

(

jπ

2M

)

. (A.10)

Next, we multiply both sides of Eq. (A.8) with the orthogonal matrix OT

OTr̈
(.)
i + ω̃2

MOTAr
(.)
i = ω̃2

MOTc
(.)
i (A.11)

OTr̈
(.)
i + ω̃2

MOTAOOTr
(.)
i = ω̃2

MOTc
(.)
i (A.12)
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and introduce ρ
(.)
i = OTr

(.)
i and γ

(.)
i = OTc

(.)
i

ρ̈
(.)
i + ω̃2

MΛρ
(.)
i = ω̃2

Mγ
(.)
i (A.13)

and thus for j = 1, 2, . . . ,M − 1 we write

ρ̈
(j)
i + ω̃2

Mλ
(j)ρ

(j)
i = ω̃2

Mγ
(j)
i (A.14)

ρ̈
(j)
i = −ω̃2

Mλ
(j)(ρ

(j)
i − 1

λ(j)
γ
(j)
i ) (A.15)

where we used that λ(j) is not zero. Next, we introduce η
(j)
i = ρ

(j)
i − γ

(j)
i /λ(j) and use that

η̈
(j)
i = ρ̈

(j)
i :

η̈
(j)
i = −ω̃2

Mλ
(j)η

(j)
i j = 1, 2, . . . ,M − 1 (A.16)

Thus, for an (M + 1)-bead linear polymer with the two end beads fixed at r(0) = a and

r(M) = b the normal-mode angular frequencies are

Ω(j) = 2ω̃M sin

(

jπ

2M

)

(A.17)

with ω̃M = µ̃1/2ωM and the corresponding normal coordinates are

η
(j)
i = ρ

(j)
i − γ

(j)
i /λ(j)

= (OTr
(.)
i )j − (OTc

(.)
i )j/λ

(j)

=
M−1
∑

k=1

√

2

M
sin

(

kjπ

M

)

r
(k)
i

− 1

4 sin2( jπ
2M

)

√

2

M

[

ai sin

(

jπ

M

)

+ bi sin

(

(M − 1)jπ

M

)]

,

i = 1, 2, . . . , fN and j = 1, 2, . . . ,M − 1. (A.18)

Since O is an orthogonal matrix, we can easily write down also the inverse of this transfor-
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mation

r
(k)
i =

M−1
∑

j=1

√

2

M
sin

(

jkπ

M

)

×
[

η
(j)
i +

1

4 sin2( jπ
2M

)

√

2

M

(

ai sin

(

jπ

M

)

+ bi sin

(

(M − 1)jπ

M

))

]

,

i = 1, 2, . . . , fN and k = 1, 2, . . . ,M − 1. (A.19)

The summation in the first term of Eqs. (A.18) and (A.19), was implemented using a

fast sine transform (related to a fast Fourier transform) algorithm. Finally, we also note

that there is no zero-frequency mode for a linear polymer, Eq. (A.17) in contrast to the

ring polymers (and analogously to the different energy-level pattern of the linear and cyclic

polyenes).
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[67] M. Schröder and H.-D. Meyer, J. Chem. Phys. 141, 034116 (2014).

[68] W. Mizukami, S. Habershon, and D. P. Tew, J. Chem. Phys. 141, 144310 (2014).

[69] See Supplementary Material Document No. for the detailed numerical results used for Figure 1

and Table 1.
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