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Edit Mátyus1 and Stuart C. Althorpe1

1Department of Chemistry, University of Cambridge,

Lensfield Road, Cambridge, CB2 1EW, United Kingdom

(Dated: 29 February 2016)

Abstract

It is well known that path-integral methods can be used to calculate the energy splitting between

the ground and the first excited state. Here we show that this approach can be generalized to

give the splitting patterns between all the lowest energy levels from different symmetry blocks

that lie below the first-excited totally symmetric state. We demonstrate this property numerically

for some two-dimensional models. The approach is likely to be particularly useful for computing

rovibrational energy levels and tunnelling splittings in floppy molecules and gas-phase clusters.
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I. INTRODUCTION

If a system is symmetric under some operator P̂ , and if the first excited state is odd with

respect to P̂ , then the splitting ∆E between these levels can be obtained from the ratio,

tanh

(
1

2
∆E

[
β − β̄(r)

]
)

=
ρ(r, P̂−1r; β)

ρ(r, r; β)
(1)

where

ρ(r, r′; β) =
∑

n

ψ∗
n(r)ψn(r

′)e−βEn (2)

is the density matrix at inverse temperature β, ψn are the system eigenstates (with energy

En). The ratio in Eq. (1) can be computed using a ‘string’ variant of Path-integral Monte

Carlo or Molecular Dynamics, thus giving a path-integral method which is complementary

to diffusion Monte Carlo (DMC) [1–3]. (Note that the splitting of the lowest two energy

levels can also be obtained from path-integral methods without relying on the symmetry

properties of the system [4–6].)

Such path-integral methods have been used in the past to compute tunnelling splittings in

various model symmetric double-well (or analogous) systems [7, 8]. However, as we showed

recently in tests on malonaldehyde [9], these methods also appear to be practical for molec-

ular systems, where P̂ can be a point-group, permutation-inversion [10] or rotational sym-

metry operator. Thus Eq. (1) is potentially useful for computing, e.g., tunnelling-splitting

patterns in water clusters, where at present only the diffusion Monte Carlo (DMC) method

(which suffers from the disadvantage of requiring complete knowledge of the nodal dividing

surface) or the projected imaginary-time Monte Carlo method [11, 12] would be applicable.

However, before such calculations can be attempted, Eq. (1) needs to be generalized to treat

systems with more than one symmetry operation P̂ .

Here, in Sec. II, we show that it is straightforward to make such a generalization, ex-

tending Eq. (1) to give multiple splittings between all the lowest-energy levels of different

symmetry that lie below the first-excited totally symmetric state. In Sec. III, we report tests

on two-dimensional models to illustrate the feasibility of the approach. Section IV concludes

the article.

2



II. DERIVATION

A. The single-splitting approach

We first summarize the derivation [7–9] of Eq. (1). We define sets of symmetry-related system

coordinates r′ = P̂−1r = −r such that ψ0(r
′ = −r) = ψ0(r) and ψ1(r

′ = −r) = −ψ1(r)

are respectively the ground and first excited state. We then consider the density matrix

elements

ρ(r, r; β) = |ψ0(r)|2e−βE0 + |ψ1(r)|2e−βE1 + . . . (3)

ρ(r, P̂−1r; β) = ψ∗
0(r)ψ0(P̂

−1r)e−βE0 + ψ∗
1(r)ψ1(P̂

−1r)e−βE1 + . . .

= |ψ0(r)|2e−βE0 − |ψ1(r)|2e−βE1 + . . . (4)

and for low temperatures (β larger than some β̃) we may neglect the contribution of the

n ≥ 2 states. For large β values (β(E2 − E0) ≫ 1) we obtain

ρ(r, P̂−1r; β)

ρ(r, r; β)
≈ 1− e−∆E(β−β̄(r))

1 + e−∆E(β−β̄(r))
(5)

which gives Eq. (1) with β̄(r) = (2/∆E)ln |ψ1(r)/ψ0(r)|. In a practical calculation, one

computes the ratio Eq. (1) using path-integral importance sampling (Monte Carlo or Molec-

ular Dynamics) at several values of β > β̃, then fits to a hyperbolic tangent function to

extract ∆E. In some cases, linearization of the hyperbolic tangent function is sufficient to

yield a good approximation to ∆E.

B. Generalization to multiple splittings

To generalize the single-splitting approach, we write Eq. (4) in matrix form

ρ(r, P̂−1r; β) = (ψ∗
0(r), ψ

∗
1(r), . . .)








1 0 0 . . .

0 −1 0 . . .

0 0
...















ψ0(r)e
−βE0

ψ1(r)e
−βE1

...








(6)
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then note that for the general case we can write down a similar matrix equation

ρ(r, P̂−1r; β)

=
∑

n

dn∑

ln=1

ψ∗
nln(r)ψnln(P̂

−1r)e−βEn

=
∑

n

dn∑

ln=1

ψ∗
nln(r)

(

P̂ψnln(r)
)

e−βEn

=
(

ψ∗
0(r),ψ

†
1(r),ψ

†
2(r), . . .

)











Γ(0)(P̂ ) 0 0 0 . . .

0 Γ(1)(P̂ ) 0 0 . . .

0 0 Γ(2)(P̂ ) 0 . . .

0 0 0
...











︸ ︷︷ ︸

K(P̂ )











ψ0(r)e
−βE0

ψ1(r)e
−βE1

ψ2(r)e
−βE2

...











(7)

where the index ln labels the degenerate eigenfunctions with the same energy En. The de-

generate eigenfunctions are collected in the ψn vector to highlight the block structure of the

matrix K(P̂ ). A symmetry operation, P̂ , mixes the degenerate eigenfunctions and these

functions span the dn-dimensional λn irreducible representation (irrep) of the symmetry

group, G. The corresponding irreducible representation matrix for the symmetry operation

P̂ ∈ G is Γ(λn)(P̂ ) ∈ C
dn×dn , which is the nth diagonal block of K(P̂ ) in Eq. (7). Fur-

thermore, we can assume that the ground state, ψ0, is non-degenerate and spans the totally

symmetric representation with Γ
(0)

P̂
= 1 for all P̂ .

We now wish to obtain combinations of density matrix elements that connect individual

pairs of levels, such that the splitting between the levels can be calculated using an analogous

relation to Eq. (1). For example, to obtain the splitting between the 2nd excited and ground

state level (assuming that ψ0, ψ1, ψ2 have different symmetries and that they are all lower

4



in energy than the first excited totally symmetric state), we wish to obtain

η
(±)
02,11(r; β) =

(

ψ∗
0(r),ψ

†
1(r),ψ

†
2(r), . . .

)

















|G| 0 0 0 . . .

0 0 0 0 . . .

0 0








± |G|
d2

0 0

0 0 0

0 0 0








0 . . .

0 0 0
...

















︸ ︷︷ ︸

X
(±)
02,11 (λ=2,p=q=1)











ψ0(r)e
−βE0

ψ1(r)e
−βE1

ψ2(r)e
−βE2

...











(8)

It is straightforward to derive such equations, using the orthogonality relations for the

elements of the irreducible representation matrices. For a finite group G of order |G|, one
uses the great orthogonality theorem

|G|
∑

i=1

(

Γ(λ)(P̂i)
)∗

nm

(

Γ(λ′)(P̂i)
)

n′m′

= δλλ′δnn′δmm′

|G|
dλ
. (9)

Clearly this relation holds irrespective of whether we are discussing point-group symmetry

or the molecular symmetry (i.e. permutation-inversion) group. For the rotational symmetry

group SO(3), we use the analogous relation

∫

dΩ D(l)(Ω)∗nmD
(l′)(Ω)n′m′ = δll′δnn′δmm′

8π2

2l + 1
(10)

where we use the Wigner D(l)(Ω) matrix for the irreducible representation matrix of the R̂Ω

rotation operation in the lth irrep and dΩ is the volume element including the metric.

For rovibrational applications, the complete symmetry group is the product G = SO(3)⊗
G0, where G0 is a finite group (which will be either a point-group, for a rigid molecule, or

a permutation-inversion group, for a floppy molecule or cluster). Using Eqs. (9) and (10),

it is easy to derive that the combination of density matrix elements connecting the (00)th
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and the (lλ)th irreps is

η
(±)
(00)(lλ),pq(r; β) =

∫

dΩ

|G0|∑

i=1

[

1±D(l)
plql

(Ω)∗
(

Γ(λ)(P̂i)
)∗

pλqλ

]

ρ(r, (R̂ΩP̂i)
−1r; β) (11)

where we also used the property that the totally symmetric irrep is represented by unity. For

other symmetry groups a similar expression can be obtained by performing the summation

or integration for the corresponding irreducible matrix elements of the group operations

(further examples are provided in Sec. III).

For large enough β values the population of the excited states of the (00)th totally

symmetric and of the (lλ)th irrep is negligible (see Fig. 1), and we are left with the leading

terms:

η
(±)
(00)(lλ),pp(r; β) ≈ |G||ψ00(r)|2e−βE00 ± |G|

dlλ
· |ψlλ,p(r)|2e−βElλ (β > β̃) (12)

which, similarly to the double-well case, Eq. (1), can be used to obtain the expression

η
(−)
(00)(lλ),pp(r; β)

η
(+)
(00)(lλ),pp(r; β)

=
|ψ00(r)|2e−βE00 − 1

dlλ
|ψlλ,p(r)|2e−βElλ

|ψ00(r)|2e−βE00 + 1
dlλ

|ψlλ,p(r)|2e−βElλ

= tanh

(
1

2
∆E00,lλ

[
β − β̄00,lλ(r)

]
)

(13)

for the energy-level difference

∆E00,lλ = Elλ − E00 (14)

and β̄00,lλ(r) = (2/∆E00,lλ) ln |ψlλ(r)/(
√
dlλψ00(r))|. Thus, the relation between the energy

levels (measured from the totally symmetric ground state) and the density matrix elements
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for the example of G = SO(3)⊗G0 is

tanh

(
1

2
∆E00,lλ

[
β − β̄00,lλ(r)

]
)

=
η
(−)
(00)(lλ),pp(r; β)

η
(+)
(00)(lλ),pp(r; β)

=

∫
dΩ

∑|G0|
i=1

(

1−D(l)(Ω)∗plpl

(

Γ(λ)(P̂i)
)∗

pλpλ

)

ρ(r, (R̂ΩP̂i)
−1r; β)

∫
dΩ

∑|G0|
i=1

(

1 +D(l)(Ω)∗plpl

(

Γ(λ)(P̂i)
)∗

pλpλ

)

ρ(r, (R̂ΩP̂i)−1r; β)

(15)

(β > β̃).

Exploiting the isotropy of space (for an isolated molecule or cluster) simplifies the triple

integral of the rotation angles in Eq. (15) to

tanh

(
1

2
∆E00,lλ

[
β − β̄00,lλ(r)

]
)

=

∫ π

0
d(cos θ)

∑|G0|
i=1

(

1− Pl(cos θ)
(

Γ(λ)(P̂i)
)∗

pλpλ

)

ρ(r, (R̂n,θP̂i)
−1r; β)

∫ π

0
d(cos θ)

∑|G0|
i=1

(

1 + Pl(cos θ)
(

Γ(λ)(P̂i)
)∗

pλpλ

)

ρ(r, (R̂n,θP̂i)−1r; β)

(16)

(β > β̃)

where Pl(cos θ) is the lth Legendre polynomial and n defines some rotation axis.

This equation gives an expression for the energy difference, ∆E00,lλ, of the lowest-lying

energy level of the λth irrep with rotational quantum number J = l and the ground-state

energy with J = 0, in terms of the low-temperature behavior of the quantum thermal

density matrix elements connecting symmetry-related structures. Using this symmetrization

equation the lowest-energy level of (in principle) any irrep can be accessed which is below

the first excited state of the totally symmetric irrep with J = 0 (see Fig. 1). Since we chose

the totally symmetric irrep with J = 0 as a “reference state”, it can be shown that the

integration and linear combination coefficients of the symmetrization equations, Eq. (11),

are all non-negative and hence, non-oscillatory. (This observation is true in general for any

symmetry group as long as we choose the lowest energy level of the totally symmetric irrep as

the reference state in the equations.) For multi-dimensional irreps there are infinitely many
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such matrices (related by unitary transformation), but any set of the irreducible matrices

can be selected, because ρ(a, b; P̂ ) is representation free in this sense.

To evaluate η
(−)
(00)(lλ),pp(r; β)/η

(+)
(00)(lλ),pp(r; β) by path-integral importance sampling, one

divides top and bottom of Eqs. (15)–(16) by the density matrix element ρ(r, r; β). (In the

special case of a single splitting, the equations simplify to Eq. (1).) The one-dimensional

integral in θ can be evaluated numerically by quadrature.

III. NUMERICAL APPLICATIONS

We tested the feasibility of the approach by applying it to the set of two-dimensional models

illustrated in Fig. 2. These systems were chosen because they illustrate the most likely

applications of the approach: multi-well tunnelling (Figs. 2a–c), fluxional systems (Fig. 2e),

and rotational levels (Fig. 2d). The density matrix ratios connecting symmetry-related

structures, ρ(r, P̂−1
i r; β)/ρ(r, r; β), were calculated using the PIMD approach of Ref. [9]

and the the symmetry analyses were carried out within the appropriate Cn and SO(2)

groups. Further details of the calculations are provided in the following subsections.

A. Computational details: Hamiltonian and potential energy surface

We carried out example calculations (see Fig. 2 and Fig. S1 of the Supplemental Material

[13]) using the Hamiltonian (in atomic units)

Ĥn = −1

2

(
∂2

∂x2
+

∂2

∂y2

)

+ Vn(x, y) (17)

with the potential energy surfaces

Vn(x, y) = −1

2

n−1∑

k=0

(

e−a[(x−xk)
2−(y−yk)

2] + e−b[(x−xk)
2−(y−yk)

2]
)

(18)

with (xk, yk) = ρ0

(

cos
2πk

n
, sin

2πk

n

)

, k = 0, 1, . . . , n− 1

of Dn (n = 2, 3, . . . , 6) point group symmetry. In Eq. (18) we used ρ0 = 3, a = 2, and

b = 0.2 to model multi-well tunneling, Vn(x, y) (n = 2, 3, . . . , 6), and ρ0 = 1 and a = b = 0.5

to obtain a barrierless potential energy surface of three-fold dihedral symmetry, V ′
3(x, y) to
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model a fluxional system. The potential energy surface of O(2) point-group symmetry was

V∞(x, y) = −1

2

(

e−2(r−3)2 + e−0.2(r−3)2
)

with r =
√

x2 + y2. (19)

For the symmetry analysis we used the corresponding cyclic subgroups, Cn (n = 2, 3, . . . , 6)

and SO(2). A similar, slightly more involved, analysis can be carried out for the lowest

energy levels of the irreps of Dn (n = 2, 3, . . . , 6) and O(2). As it is highlighted in Fig. 1

only those energy levels can be obtained within this symmetrization approach which are

lower in energy than the first excited state of the totally symmetric irrep (and are below

the dissociation limit). For the present parameterization of the example systems the cyclic

subgroups and SO(2) deliver all accessible information.

B. Computational details: symmetrization in Cn

For the mth irrep of a system with G = Cn symmetry the equivalent of Eq. (11) is

η
(∓)
0m,11(r0; β) =

n−1∑

k=0

[

1∓
(

Γ
(m)
11 (R̂k)

)∗]

ρ(r0, R̂
−1
k r0; β) (20)

which connects the 0th ground state and the lowest energy level in themth irrep of Cn. R̂k is

a rotation operator about the n-fold rotation axis by an angle of 2πk/n. The symmetrization

is carried out using the (1,1) element of the irreducible representation matrix of R̂k in the

mth irrep, denoted by Γ
(m)
11 (R̂k). In this work, we use the basis vectors, ϕ ∈ [0, 2π ),




χ−m(ϕ)

χm(ϕ)



 =
1√
2π




e−imϕ

eimϕ



 (21)

to construct the 2-dimensional irreducible representation matrices for the rotation operators,

which give rise to

Γ
(m)
11 (R̂k) = eim

2πk
n for m = 1, . . . , ⌊n/2⌋ − 1. (22)
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For even n the function χn/2(ϕ) = ein/2ϕ/
√
2π spans a one-dimensional irrep with Γ

(m)
11 (R̂k) =

(−1)k character. Thereby, the explicit form of Eq. (20) is

η
(∓)
0m,11(r0; β) =

n−1∑

k=0

c
(m,∓)
k ρ(r0, R̂

−1
k r0; β) with c

(m,∓)
k = 1∓ e−im 2πk

n (23)

for m = 0, 1, . . . , ⌊n/2⌋.

The elementary amplitudes, ρ(r0, R̂
−1
k r0; β), used to form the symmetrized amplitude,

η
(∓)
0m,11(r0; β), are visualized in Fig. 3 for the example of the C5 group.

C. Computational details: symmetrization in SO(2)

For the mth irrep of a system with G = SO(2) symmetry the equivalent of Eq. (11) takes

the form

η
(∓)
0m,11(r0; β) =

2π∫

0

dϕ
[

1∓
(

Γ
(m)
11 (R̂ϕ)

)∗]

ρ(r0, R̂
−1
ϕ r0; β) (24)

=

2π∫

0

dϕ
[
1∓ e−imϕ

]
ρ(r0, R̂

−1
ϕ r0; β) (25)

≈
N−1∑

i=0

c
(m,∓)
i ρ(r0, R̂

−1
ϕi
r0; β) with c

(m,∓)
i = wi

[
1∓ e−imϕi

]
. (26)

R̂ϕ is the operator of a rotation by angle ϕ about the rotation axis. To construct the

irreducible representation matrices we can use the basis vectors of Eq. (21) with m = 1, 2, . . .

In the practical calculations the integral for ϕ is approximated numerically over a grid of N

points, Eq. (26). The minimum number of grid points increases with m. For example, the

energy splitting ∆E0m with m = 1 can be obtained already with N = 2 points.
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D. Computational details: path-integral molecular dynamics simulation to calcu-

late the density-matrix ratios

We write the symmetrized density matrix ratio as

η
(−)
0m,11(r0; β)

η
(+)
0m,11(r0; β)

=

∑n−1
k=0 c

(−)
k ρ(r0, R̂

−1
k r0; β)

∑n−1
k=0 c

(+)
k ρ(r0, R̂

−1
k r0; β)

=

∑n−1
k=0 c

(−)
k ρ(r0, R̂

−1
k r0; β)/ρ(r0, r0; β)

∑n−1
k=0 c

(+)
k ρ(r0, R̂

−1
k r0; β)/ρ(r0, r0; β)

(27)

and calculate ρ(r0, R̂
−1
k r0, β)/ρ(r0, r0; β) with PIMD using the implementation of Ref. [9].

For the Cn finite groups n = |G| and for SO(2) n = N is the number of integration points in

Eq. (26). In this paragraph, we summarize the method of Ref. [9] and specify the simulation

parameters. Using the classical isomorphism of the path-integral formalism, ρ(a, b; β) is

represented with a classical phase space integral for a hypothetical linear polymer with its

two end points fixed at a and at b. ρ(r0, R̂
−1
k r0; β)/ρ(r0, r0; β) is calculated from the free-

energy difference (obtained by thermodynamic integration) of an open linear polymer with

end points fixed at r0 and at R̂−1
k r0 and a closed linear polymer with both end points fixed at

r0. In the present work results are shown for rT0 = (3, 0). The number of beads, M +1, the

total simulation time, tmax (in atomic units), and the number of Gauss–Legendre quadrature

points, Nξ, (used in the thermodynamic integration) are given as (M, tmax, Nξ) in each row

of the Tables S1–S7 of the Supplemental Material. Collection of data started after an initial

equilibration of 10–30 % of tmax. For the other simulation parameters, we used a time step

of 10−2 (in atomic units), normal-mode scaling (each normal mode of the linear polymer

scaled to Ω̃ = 1), and a massive Andersen thermostat with a collision frequency of 1000.

E. Computational details: fitting the energy splittings

To obtain the energy splitting, ∆E0m, we fit the function

η
(−)
0m,11(r0; β)

η
(+)
0m,11(r0; β)

= tanh

(
1

2
∆E0m

[
β − β̄0m(r0)

]
)

. (28)
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to a dataset
(

βi, η
(−)
0m,11(r0; βi)/η

(+)
0m,11(r0; βi)

)

(i = 1, 2, . . . , Ndata). β̄0m(r0) is also obtained

and carries information about the relative amplitude of the wave functions. An accurate

∆E0m value is obtained if β is large enough to depopulate excited states in the 0th (totally

symmetric) and in the mth irreps (see also Fig. 1). In practice, an optimal β range is deter-

mined (in a series of calculations), in which the excited states are sufficiently depopulated

but β is as low as possible to keep the cost of the simulations low and to have sufficient

populations in the desired states. In the present examples β̃ ≈ 5.

F. Discussion

The PIMD energy-level splittings (Fig. 2) are in excellent agreement with the variational

results obtained with the program of Ref. [14]. An important question is whether the sym-

metrization equations, Eqs. (11), (16) (and Eqs. (20), (26)) lead to additional computational

costs on top of what would be required in a standard application of Eq. (1) (to compute a

single splitting). Clearly, the number of ratios ρ(r, P̂−1
i r; β)/ρ(r, r; β) scales as the number

of operations P̂ and hence with the number of energy-level splittings calculated. Note that if

the molecular symmetry group is very large, it is not necessary to draw P̂ from the complete

permutation-inversion group (which grows factorially with the number of identical particles);

one can draw P̂ from a subgroup (for example, the molecular symmetry group), containing

just a few operations. For each P̂ , the evaluation of ρ(r, P̂−1
i r; β)/ρ(r, r; β) takes up a

comparable amount of computational effort to what is required to calculate the single ratio

in Eq. (1). Hence, the overall cost of the approach scales as the number of potential energy

gradient evaluations, which usually grows approximately linearly with system size. As with

the application of Eq. (1) [9], the cost also increases if an operator P̂n pushes the system

through a high barrier, and increases with the value of β̃ needed to eliminate contributions

from excited states (within the selected irrep).

IV. SUMMARY AND OUTLOOK

We have demonstrated that it is feasible to use path-integral methods to calculate energy

splittings between all lowest energy levels of different irreducible symmetry that lie below the

first-excited totally symmetric state. The approach uses space-fixed Cartesian coordinates,
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and does not require knowledge of the nodal dividing surface, since the symmetry operations

need to be applied to just one Cartesian structure.

For each symmetry operation, the cost of such a calculation is comparable to that of

applying Eq. (1). Recent work [9] has shown that Eq. (1) can be used to compute the

tunnelling splitting of malonaldehyde, and that with further development it is likely to

be able to treat larger systems. The approach developed here should thus be similarly

applicable, and should complement the DMC method [1–3] (which requires knowledge of

the nodal dividing surface, except for the ground state). Systems to which it is likely to be

applicable (which satisfy the essential condition of having levels below the first-excited totally

symmetric state) include the splitting patterns of water clusters (where it would provide an

exact generalization of multi-well instanton theory [15–19] and related semiclassical methods

[20]) and the rovibrational levels of fluxional molecules.
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FIG. 1: Schematic showing the energy splittings which can be obtained from the proposed path-

integral method. (The degenerate energy levels have been artificially split to make the figure

self-explanatory; “g.s.” and “ex. state” denote the ground and excited state.)
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FIG. 2: Lowest energy levels of different irreducible symmetry calculated using path-integral molec-

ular dynamics (PIMD), for a variety of two-dimensional models with n-fold dihedral symmetry

(shown at bottom). Also shown are the exact results from variational calculations (italics). The

corresponding Cn or SO(2) subgroups were used to extract the energy-level splittings, using the

procedure of Sec. II. The functional forms of the potential energy surfaces and all other details of

the calculations are provided in Sec. III. Atomic units are used throughout this work.
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