14 research outputs found

    An Exact Algorithm for Side-Chain Placement in Protein Design

    Get PDF
    Computational protein design aims at constructing novel or improved functions on the structure of a given protein backbone and has important applications in the pharmaceutical and biotechnical industry. The underlying combinatorial side-chain placement problem consists of choosing a side-chain placement for each residue position such that the resulting overall energy is minimum. The choice of the side-chain then also determines the amino acid for this position. Many algorithms for this NP-hard problem have been proposed in the context of homology modeling, which, however, reach their limits when faced with large protein design instances. In this paper, we propose a new exact method for the side-chain placement problem that works well even for large instance sizes as they appear in protein design. Our main contribution is a dedicated branch-and-bound algorithm that combines tight upper and lower bounds resulting from a novel Lagrangian relaxation approach for side-chain placement. Our experimental results show that our method outperforms alternative state-of-the art exact approaches and makes it possible to optimally solve large protein design instances routinely

    Continuous population-level monitoring of SARS-CoV-2 seroprevalence in a large European metropolitan region.

    Get PDF
    Effective public health measures against SARS-CoV-2 require granular knowledge of population-level immune responses. We developed a Tripartite Automated Blood Immunoassay (TRABI) to assess the IgG response against three SARS-CoV-2 proteins. We used TRABI for continuous seromonitoring of hospital patients and blood donors (n = 72'250) in the canton of Zurich from December 2019 to December 2020 (pre-vaccine period). We found that antibodies waned with a half-life of 75 days, whereas the cumulative incidence rose from 2.3% in June 2020 to 12.2% in mid-December 2020. A follow-up health survey indicated that about 10% of patients infected with wildtype SARS-CoV-2 sustained some symptoms at least twelve months post COVID-19. Crucially, we found no evidence of a difference in long-term complications between those whose infection was symptomatic and those with asymptomatic acute infection. The cohort of asymptomatic SARS-CoV-2-infected subjects represents a resource for the study of chronic and possibly unexpected sequelae

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Quantifying the dynamics of viruses and the cellular immune response of the host

    No full text
    Infections can be caused by viruses, which attack certain cells within an infected host. However, the immune system of the host has evolved remarkable defense mechanisms that counter against an infection. In particular, so-called cytotoxic T lymphocytes can recognize and eliminate infected cells. This thesis makes use of mathematical models and computer simulations to describe the dynamics of a virus population and the cellular immune response within an infected host. Such research is of critical importance to better understand the nature of viral infections. In the beginning, questions on the HIV replication rate are addressed. It is investigated how rapid infected cells produce new virus particles and how rapid they die. It has been known that after HIV-infected patients start with antiretroviral drug treatment, the concentration of virus in the blood decreases rapidly. This observation has led to the conclusion that HIV-infected cells are short lived and that they die one to two days after they have been infected. Based on a new analysis, the thesis shows that HIV-infected cells might even live shorter than previously anticipated. Further, several models that describe the dynamics of viruses in presence of a cellular immune response are presented. They are used to investigate the ability of the immune response to suppress the replication of the virus. In the case of the chronic infection with HIV, it is shown how the virus can mutate and avoid recognition and elimination by the immune response. This process is attributed to the failing of HIV-infected patients to control the infection and it is shown how rapid the virus can escape the immune response. Finally, the thesis deals with viral infections in different host species, such as mice, macaques and humans. Therefore, it is discussed as to whether the findings on the influence of the immune response on the viral replication can be generalized. Although some differences in the results can be attributed to the body weight of the host species, additional research is needed to shed more light on the question whether the nature of viral infections is affected by the size of their host

    Dynamics of CD8+ T cell responses during acute and chronic lymphocytic choriomeningitis virus infection

    No full text
    Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories

    The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic

    No full text
    Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks. © 2021, The Author(s)
    corecore