248 research outputs found

    Lunar Resource Assessment: an Industry Perspective

    Get PDF
    The goals of the U.S. space program are to return to the Moon, establish a base, and continue onward to Mars. To accomplish this in a relatively short time frame and to avoid the high costs of transporting materials from the Earth, resources on the Moon will need to be mined. Oxygen will be one of the most important resources, to be used as a rocket propellant and for life support. Ilmenite and lunar regolith have both been considered as ores for the production of oxygen. Resource production on the Moon will be a very important part of the U.S. space program. To produce resources we must explore to identify the location of ore or feedback and calculate the surface and underground reserves. Preliminary resource production tests will provide the information that can be used in final plant design. Bechtel Corporation's experience in terrestrial engineering and construction has led to an interest in lunar resource assessment leading to the construction of production facilities on the Moon. There is an intimate link between adequate resource assessment to define feedstock quantity and quality, material processing requirements, and the successful production of lunar oxygen. Although lunar resource assessment is often viewed as a research process, the engineering and production aspects are very important to consider. Resource production often requires the acquisition of different types, scales, or resolutions of data than that needed for research, and it is needed early in the exploration process. An adequate assessment of the grade, areal extent, and depth distribution of the resources is a prerequisite to mining. The need for a satisfactory resource exploration program using remote sensing techniques, field sampling, and chemical and physical analysis is emphasized. These data can be used to define the ore for oxygen production and the mining, processing facilities, and equipment required

    A Pyrene Maleimide with a Flexible Linker for Sampling of Longer Inter-Thiol Distances by Excimer Formation

    Get PDF
    Pyrene-containing compounds are commonly used in a number of fluorescence-based applications because they can form excited-state dimers (excimers) by stacking interaction between excited-state and ground-state monomers. Their usefulness arises from the facts that excimer formation requires close proximity between the pyrenes and that the excimer emission spectrum is very different from that of the monomers. One of many applications is to assess proximity between specific sites of macromolecules labeled with pyrenes. This has been done using pyrene maleimide, a reagent that reacts with reduced thiols of cysteines, but its use for structural studies of proteins has been rather limited. This is because the introduction of two cysteines at sufficiently close distance from each other to obtain excimer fluorescence upon labeling with pyrene maleimide requires detailed knowledge of the protein structure or extensive site-directed mutagenesis trials. We synthesized and tested a new compound with a 4-carbon methylene linker placed between the maleimide and the pyrene (pyrene-4-maleimide), with the aim of increasing the sampling distance for excimer formation and making the use of excimer fluorescence simpler and more widespread. We tested the new compound on thiol-modified oligonucleotides and showed that it can detect proximity between thiols beyond the reach of pyrene maleimide. Based on its spectroscopic and chemical properties, we suggest that pyrene-4-maleimide is an excellent probe to assess proximities between cysteines in proteins and thiols in other macromolecules, as well as to follow conformational changes

    Development and Validation of a Model for Hydrogen Reduction of JSC-1A

    Get PDF
    Hydrogen reduction of lunar regolith has been proposed as a viable technology for oxygen production on the moon. Hydrogen reduces FeO present in the lunar regolith to form metallic iron and water. The water may be electrolyzed to recycle the hydrogen and produce oxygen. Depending upon the regolith composition, FeO may be bound to TiO2 as ilmenite or it may be dispersed in glassy substrates. Some testing of hydrogen reduction has been conducted with Apollo-returned lunar regolith samples. However, due to the restricted amount of lunar material available for testing, detailed understanding and modeling of the reduction process in regolith have not yet been developed. As a step in this direction, hydrogen reduction studies have been carried out in more detail with lunar regolith simulants such as JSC-1A by NASA and other organizations. While JSC-1A has some similarities with lunar regolith, it does not duplicate the wide variety of regolith types on the moon, for example, it contains almost no ilmenite. Nonetheless, it is a good starting point for developing an understanding of the hydrogen reduction process with regolith-like material. In this paper, a model utilizing a shrinking core formulation coupled with the reactor flow is described and validated against experimental data on hydrogen reduction of JSC-1A

    An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci

    Full text link
    A model of mutation rate evolution for multiple loci under arbitrary selection is analyzed. Results are obtained using techniques from Karlin (1982) that overcome the weak selection constraints needed for tractability in prior studies of multilocus event models. A multivariate form of the reduction principle is found: reduction results at individual loci combine topologically to produce a surface of mutation rate alterations that are neutral for a new modifier allele. New mutation rates survive if and only if they fall below this surface - a generalization of the hyperplane found by Zhivotovsky et al. (1994) for a multilocus recombination modifier. Increases in mutation rates at some loci may evolve if compensated for by decreases at other loci. The strength of selection on the modifier scales in proportion to the number of germline cell divisions, and increases with the number of loci affected. Loci that do not make a difference to marginal fitnesses at equilibrium are not subject to the reduction principle, and under fine tuning of mutation rates would be expected to have higher mutation rates than loci in mutation-selection balance. Other results include the nonexistence of 'viability analogous, Hardy-Weinberg' modifier polymorphisms under multiplicative mutation, and the sufficiency of average transmission rates to encapsulate the effect of modifier polymorphisms on the transmission of loci under selection. A conjecture is offered regarding situations, like recombination in the presence of mutation, that exhibit departures from the reduction principle. Constraints for tractability are: tight linkage of all loci, initial fixation at the modifier locus, and mutation distributions comprising transition probabilities of reversible Markov chains.Comment: v3: Final corrections. v2: Revised title, reworked and expanded introductory and discussion sections, added corollaries, new results on modifier polymorphisms, minor corrections. 49 pages, 64 reference

    Impact of Epistasis and Pleiotropy on Evolutionary Adaptation

    Full text link
    Evolutionary adaptation is often likened to climbing a hill or peak. While this process is simple for fitness landscapes where mutations are independent, the interaction between mutations (epistasis) as well as mutations at loci that affect more than one trait (pleiotropy) are crucial in complex and realistic fitness landscapes. We investigate the impact of epistasis and pleiotropy on adaptive evolution by studying the evolution of a population of asexual haploid organisms (haplotypes) in a model of N interacting loci, where each locus interacts with K other loci. We use a quantitative measure of the magnitude of epistatic interactions between substitutions, and find that it is an increasing function of K. When haplotypes adapt at high mutation rates, more epistatic pairs of substitutions are observed on the line of descent than expected. The highest fitness is attained in landscapes with an intermediate amount of ruggedness that balance the higher fitness potential of interacting genes with their concomitant decreased evolvability. Our findings imply that the synergism between loci that interact epistatically is crucial for evolving genetic modules with high fitness, while too much ruggedness stalls the adaptive process.Comment: 20 pages, 8 figures, plus 10 supporting figure

    New insights on neutral binary representations for evolutionary optimization

    Get PDF
    This paper studies a family of redundant binary representations NNg(l, k), which are based on the mathematical formulation of error control codes, in particular, on linear block codes, which are used to add redundancy and neutrality to the representations. The analysis of the properties of uniformity, connectivity, synonymity, locality and topology of the NNg(l, k) representations is presented, as well as the way an (1+1)-ES can be modeled using Markov chains and applied to NK fitness landscapes with adjacent neighborhood.The results show that it is possible to design synonymously redundant representations that allow an increase of the connectivity between phenotypes. For easy problems, synonymously NNg(l, k) representations, with high locality, and where it is not necessary to present high values of connectivity are the most suitable for an efficient evolutionary search. On the contrary, for difficult problems, NNg(l, k) representations with low locality, which present connectivity between intermediate to high and with intermediate values of synonymity are the best ones. These results allow to conclude that NNg(l, k) representations with better performance in NK fitness landscapes with adjacent neighborhood do not exhibit extreme values of any of the properties commonly considered in the literature of evolutionary computation. This conclusion is contrary to what one would expect when taking into account the literature recommendations. This may help understand the current difficulty to formulate redundant representations, which are proven to be successful in evolutionary computation. (C) 2016 Elsevier B.V. All rights reserved

    Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks

    Get PDF
    Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan® technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases

    Analysis of cancer metabolism with high-throughput technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in genomics and proteomics have allowed us to study the nuances of the Warburg effect – a long-standing puzzle in cancer energy metabolism – at an unprecedented level of detail. While modern next-generation sequencing technologies are extremely powerful, the lack of appropriate data analysis tools makes this study difficult. To meet this challenge, we developed a novel application for comparative analysis of gene expression and visualization of RNA-Seq data.</p> <p>Results</p> <p>We analyzed two biological samples (normal human brain tissue and human cancer cell lines) with high-energy, metabolic requirements. We calculated digital topology and the copy number of every expressed transcript. We observed subtle but remarkable qualitative and quantitative differences between the citric acid (TCA) cycle and glycolysis pathways. We found that in the first three steps of the TCA cycle, digital expression of aconitase 2 (<it>ACO2</it>) in the brain exceeded both citrate synthase (<it>CS</it>) and isocitrate dehydrogenase 2 (<it>IDH2</it>), while in cancer cells this trend was quite the opposite. In the glycolysis pathway, all genes showed higher expression levels in cancer cell lines; and most notably, digital gene expression of glyceraldehyde-3-phosphate dehydrogenase (<it>GAPDH</it>) and enolase (<it>ENO</it>) were considerably increased when compared to the brain sample.</p> <p>Conclusions</p> <p>The variations we observed should affect the rates and quantities of ATP production. We expect that the developed tool will provide insights into the subtleties related to the causality between the Warburg effect and neoplastic transformation. Even though we focused on well-known and extensively studied metabolic pathways, the data analysis and visualization pipeline that we developed is particularly valuable as it is global and pathway-independent.</p

    Predicting the Evolution of Sex on Complex Fitness Landscapes

    Get PDF
    Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction
    corecore