16 research outputs found

    LFV and Dipole Moments in Models with A4 Flavour Symmetry

    Full text link
    It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.Comment: 10 pages, 1 figure. Adapted from a talk given at "DISCRETE'08: Symposium on Prospects in the Physics of Discrete Symmetries", December 11-16 2008, Valencia, Spai

    Discrete symmetries and models of flavor mixing

    Full text link
    Evidences of a discrete symmetry behind the pattern of lepton mixing are analyzed. The program of "symmetry building" is outlined. Generic features and problems of realization of this program in consistent gauge models are formulated. The key issues include the flavor symmetry breaking, connection of mixing and masses, {\it ad hoc} prescription of flavor charges, "missing" representations, existence of new particles, possible accidental character of the TBM mixing. Various ways are considered to extend the leptonic symmetries to the quark sector and to reconcile them with Grand Unification. In this connection the quark-lepton complementarity could be a viable alternative to TBM. Observational consequences of the symmetries and future experimental tests of their existence are discussed.Comment: 14 pages, 5 figures. Talk given at the Symposium "DISCRETE 2010", 6 - 11 December 2010, La Sapienza, Rome, Ital

    A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing

    Full text link
    We present a see-saw A4A_4 model for Tri-Bimaximal mixing which is based on a very economical flavour symmetry and field content and still possesses all the good features of A4A_4 models. In particular the charged lepton mass hierarchies are determined by the A4×Z4A_4\times Z_4 flavour symmetry itself without invoking a Froggatt-Nielsen U(1) symmetry. Tri-Bimaximal mixing is exact in leading order while all the mixing angles receive corrections of the same order in next-to-the-leading approximation. As a consequence the predicted value of θ13\theta_{13} is within the sensitivity of the experiments which will take data in the near future. The light neutrino spectrum, typical of A4A_4 see-saw models, with its phenomenological implications, also including leptoproduction, is studied in detail.Comment: 20 pages, 2 figure

    Towards Minimal S4 Lepton Flavor Model

    Get PDF
    We study lepton flavor models with the S4S_4 flavor symmetry. We construct simple models with smaller numbers of flavon fields and free parameters, such that we have predictions among lepton masses and mixing angles. The model with a S4S_4 triplet flavon is not realistic, but we can construct realistic models with two triplet flavons, or one triplet and one doublet flavons.Comment: 18 pages, 4 figures, references are adde

    Discrete Flavour Groups, \theta_13 and Lepton Flavour Violation

    Get PDF
    Discrete flavour groups have been studied in connection with special patterns of neutrino mixing suggested by the data, such as Tri-Bimaximal mixing (groups A4, S4...) or Bi-Maximal mixing (group S4...) etc. We review the predictions for sin(\theta_13) in a number of these models and confront them with the experimental measurements. We compare the performances of the different classes of models in this respect. We then consider, in a supersymmetric framework, the important implications of these flavour symmetries on lepton flavour violating processes, like \mu -> e gamma and similar processes. We discuss how the existing limits constrain these models, once their parameters are adjusted so as to optimize the agreement with the measured values of the mixing angles. In the simplified CMSSM context, adopted here just for indicative purposes, the small tan(beta) range and heavy SUSY mass scales are favoured by lepton flavour violating processes, which makes it even more difficult to reproduce the reported muon g-2 discrepancy.Comment: 45 pages, 16 figures, 3 tables; V3 submitted to add an acknowledgment to a Networ

    A See-Saw S4S_4 model for fermion masses and mixings

    Full text link
    We present a supersymmetric see-saw S4S_4 model giving rise to the most general neutrino mass matrix compatible with Tri-Bimaximal mixing. We adopt the S4×Z5S_4\times Z_5 flavour symmetry, broken by suitable vacuum expectation values of a small number of flavon fields. We show that the vacuum alignment is a natural solution of the most general superpotential allowed by the flavour symmetry, without introducing any soft breaking terms. In the charged lepton sector, mass hierarchies are controlled by the spontaneous breaking of the flavour symmetry caused by the vevs of one doublet and one triplet flavon fields instead of using the Froggatt-Nielsen U(1) mechanism. The next to leading order corrections to both charged lepton mass matrix and flavon vevs generate corrections to the mixing angles as large as O(λC2){\cal O}(\lambda_C^2). Applied to the quark sector, the symmetry group S4×Z5S_4\times Z_5 can give a leading order VCKMV_{CKM} proportional to the identity as well as a matrix with O(1){\cal O}(1) coefficients in the Cabibbo 2×22\times 2 submatrix. Higher order corrections produce non vanishing entries in the other VCKMV_{CKM} entries which are generically of O(λC2){\cal O}(\lambda_C^2).Comment: 30 pages, 3 figures, minor changes to match the published versio

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE
    corecore