5,202 research outputs found

    Long-range behavior of the optical potential for the elastic scattering of charged composite particles

    Get PDF
    The asymptotic behavior of the optical potential, describing elastic scattering of a charged particle α\alpha off a bound state of two charged, or one charged and one neutral, particles at small momentum transfer Δα\Delta_{\alpha} or equivalently at large intercluster distance ρα\rho_{\alpha}, is investigated within the framework of the exact three-body theory. For the three-charged-particle Green function that occurs in the exact expression for the optical potential, a recently derived expression, which is appropriate for the asymptotic region under consideration, is used. We find that for arbitrary values of the energy parameter the non-static part of the optical potential behaves for Δα0\Delta_{\alpha} \rightarrow 0 as C1Δα+o(Δα)C_{1}\Delta_{\alpha} + o\,(\Delta_{\alpha}). From this we derive for the Fourier transform of its on-shell restriction for ρα\rho_{\alpha} \rightarrow \infty the behavior a/2ρα4+o(1/ρα4)-a/2\rho_{\alpha}^4 + o\,(1/\rho_{\alpha}^4), i.e., dipole or quadrupole terms do not occur in the coordinate-space asymptotics. This result corroborates the standard one, which is obtained by perturbative methods. The general, energy-dependent expression for the dynamic polarisability C1C_{1} is derived; on the energy shell it reduces to the conventional polarisability aa which is independent of the energy. We emphasize that the present derivation is {\em non-perturbative}, i.e., it does not make use of adiabatic or similar approximations, and is valid for energies {\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte

    Chemical equilibrium study at SPS 158A GeV

    Full text link
    A detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energy 158A GeV is presented. By analyzing hadronic multiplicities within the statistical hadronization approach, the chemical equilibration of p-p, C-C, Si-Si and Pb-Pb systems is studied as a function of the number of participating nucleons in the system. Additionally, Two Component statistical hadronization model is applied to the data and is found to be able to explain the observed strangeness hadronic phase space under-saturation.Comment: 4 pages, 3 figures to appear in the proceedings of the ''Strangeness in Quark Matter 2004'' conferenc

    System Size Dependence of Particle Production at the SPS

    Full text link
    Recent results on the system size dependence of net-baryon and hyperon production as measured at the CERN SPS are discussed. The observed Npart dependences of yields, but also of dynamical properties, such as average transverse momenta, can be described in the context of the core corona approach. Other observables, such as antiproton yields and net-protons at forward rapidities, do not follow the predictions of this model. Possible implications for a search for a critical point in the QCD phase diagram are discussed. Event-by-event fluctuations of the relative core to corona source contributions might influence fluctuation observables (e.g. multiplicity fluctuations). The magnitude of this effect is investigated.Comment: 10 pages, 4 figurs. Proceedings of the 6th International Workshop on Critical Point and Onset of Deconfinement in Dubna, Aug. 201

    R-matrix theory of driven electromagnetic cavities

    Full text link
    Resonances of cylindrical symmetric microwave cavities are analyzed in R-matrix theory which transforms the input channel conditions to the output channels. Single and interfering double resonances are studied and compared with experimental results, obtained with superconducting microwave cavities. Because of the equivalence of the two-dimensional Helmholtz and the stationary Schroedinger equations, the results present insight into the resonance structure of regular and chaotic quantum billiards.Comment: Revtex 4.

    Bose Einstein Condensate in a Box

    Full text link
    Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.Comment: 4 pages, 5 figure

    proton-deuteron elastic scattering above the deuteron breakup

    Get PDF
    The complex Kohn variational principle and the (correlated) hyperspherical harmonics method are applied to study the proton-deuteron elastic scattering at energies above the deuteron breakup threshold. Results for the elastic cross section and various elastic polarization observables have been obtained by fully taking into account the long-range effect of the Coulomb interaction and using a realistic nucleon-nucleon interaction model. Detailed comparison between the theoretical predictions and the accurate and abundant proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure

    Statistics of S-matrix poles in Few-Channel Chaotic Scattering: Crossover from Isolated to Overlapping Resonances

    Full text link
    We derive the explicit expression for the distribution of resonance widths in a chaotic quantum system coupled to continua via M equivalent open channels. It describes a crossover from the χ2\chi^2 distribution (regime of isolated resonances) to a broad power-like distribution typical for the regime of overlapping resonances. The first moment is found to reproduce exactly the Moldauer-Simonius relation between the mean resonance width and the transmission coefficient. This fact may serve as another manifestation of equivalence between the spectral and the ensemble averaging.Comment: 4 two-column pages, RevTex. text is slightly modified; some misprints are correcte

    Scaling law in target-hunting processes

    Full text link
    We study the hunting process for a target, in which the hunter tracks the goal by smelling odors it emits. The odor intensity is supposed to decrease with the distance it diffuses. The Monte Carlo experiment is carried out on a 2-dimensional square lattice. Having no idea of the location of the target, the hunter determines its moves only by random attempts in each direction. By sorting the searching time in each simulation and introducing a variable xx to reflect the sequence of searching time, we obtain a curve with a wide plateau, indicating a most probable time of successfully finding out the target. The simulations reveal a scaling law for the searching time versus the distance to the position of the target. The scaling exponent depends on the sensitivity of the hunter. Our model may be a prototype in studying such the searching processes as various foods-foraging behavior of the wild animals.Comment: 7 figure
    corecore