Resonances of cylindrical symmetric microwave cavities are analyzed in
R-matrix theory which transforms the input channel conditions to the output
channels. Single and interfering double resonances are studied and compared
with experimental results, obtained with superconducting microwave cavities.
Because of the equivalence of the two-dimensional Helmholtz and the stationary
Schroedinger equations, the results present insight into the resonance
structure of regular and chaotic quantum billiards.Comment: Revtex 4.