5 research outputs found

    Involvement of Nitric Oxide in Methyl Jasmonate-Mediated Regulation of Water Metabolism in Wheat Plants under Drought Stress

    No full text
    Drought is a serious challenge that causes significant crop loss worldwide. The developmental processes of plants are regulated by phytohormones and signaling molecules that crosstalk together in signaling cascades. We suppose that nitric oxide (NO) is a secondary messenger of the JAs signaling pathway, as 10−7 M methyl jasmonate (MeJA) pretreatment regulates NO accumulation in wheat plants under drought stress, modulated by 12% polyethylene glycol (PEG), and in control plants. This study aimed to compare 2 × 10−4 M nitric oxide donor sodium nitroprusside (SNP) and MeJA pretreatments in regulating growth and water balance parameters at the vulnerable initial first-leaf stage of wheat growth. The application of 12% PEG decreased transpiration intensity twofold, relative water content (RWC) by 7–9%, and osmotic potential of cell sap by 33–40% compared with those of control plants. Under drought, MeJA- and SNP-pretreated plants decreased transpiration intensity by 20–25%, RWC by 3–4%, and osmotic potential of cell sap by 16–21% compared with those of control plants, and enhanced the proline content by 25–55% compared with MeJA- and SNP-untreated plants. Our results suggest that pretreatment with MeJA as well as SNP could mitigate drought stress in wheat plants. Similarities in MeJA- and SNP-induced shifts in plant water balance suggested that NO is a mediator of MeJA-induced regulation of wheat water content during water deficit

    Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects

    No full text
    Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed

    Nitric Oxide (NO) Improves Wheat Growth under Dehydration Conditions by Regulating Phytohormone Levels and Induction of the Expression of the <i>TADHN</i> Dehydrin Gene

    No full text
    Nitric oxide (NO) is a universal signaling molecule with important regulatory functions in the plant’s life cycle and adaptation to a wide spectrum of environmental stresses including drought. The effect of pre-sowing seed treatment with the donor of NO sodium nitroprusside (SNP, 200 μM) on wheat Triticum aestivum L. plants subjected to dehydration (PEG-8000, 12%) was investigated. SNP pretreatment stimulated germination and seedling growth in normal conditions and protected them under dehydration. These effects were confirmed by percentage of seed germination, changes in fresh and dry weight of 5–6-day-old seedlings, as well as by seedlings’ linear dimensions, visual appearance, and mitotic index of the root apical meristem. Assessment of the transpiration intensity (TI) and relative water content (RWC) showed that SNP pretreatment helped to maintain the water status of seedlings subjected to dehydration stress. The data obtained by enzyme-linked immunosorbent assay (ELISA) suggested that the positive effects of SNP may be due to its influence on the phytohormonal system. SNP pretreatment induced an increase in the level of indolylacetic acid (IAA) and especially cytokinins (CK), while essential changes in ABA content were not detected. Water deficiency caused a substantial increase in ABA content and a decrease in the levels of CK and IAA. Pre-sowing SNP treatment decreased stress-induced fluctuations in the content of all studied phytohormones. Using reverse-transcription PCR (RT-PCR), we obtained data on the increase in expression of the TADHN dehydrin gene in SNP-pretreated seedlings under normal and, especially, under dehydration conditions. These findings may indicate the participation of dehydrins in NO-induced defense reactions in wheat plants under water stress. Furthermore, exogenous NO had a stabilizing effect on membrane cellular structures, as evidenced by the reduction of electrolyte leakage (EL) levels and malondialdehyde (MDA) content in dehydrated wheat seedlings under the influence of pre-sowing SNP treatment

    Role of Endogenous Salicylic Acid as a Hormonal Intermediate in the Bacterial Endophyte <i>Bacillus subtilis</i>-Induced Protection of Wheat Genotypes Contrasting in Drought Susceptibility under Dehydration

    No full text
    Endophytic Bacillus subtilis is a non-pathogenic beneficial bacterium which promotes plant growth and tolerance to abiotic stresses, including drought. However, the underlying physiological mechanisms are not well understood. In this study, the potential role that endogenous salicylic acid (SA) plays in regulating endophytic B. subtilis-mediated drought tolerance in wheat (Triticum aestivum L.) was examined. The study was conducted on genotypes with contrasting levels of intrinsic drought tolerance (drought-tolerant (DT) cv. Ekada70; drought-susceptible (DS) cv. Salavat Yulaev). It was revealed that B. subtilis 10-4 promoted endogenous SA accumulation and increased the relative level of transcripts of the PR-1 gene, a marker of the SA-dependent defense pathway, but two wheat cultivars responded differently, with the highest levels exhibited in DT wheat seedlings. These had a positive correlation with the ability of strain 10-4 to effectively protect DT wheat seedlings against drought injury by decreasing osmotic and oxidative damages (i.e., proline, water holding capacity (WHC), and malondialdehyde (MDA)). However, the use of the SA biosynthesis inhibitor 1-aminobenzotriazole prevented endogenous SA accumulation under normal conditions and the maintenance of its increased level under stress as well as abolished the effects of B. subtilis treatment. Particularly, the suppression of strain 10-4-induced effects on proline and WHC, which are both contributing factors to dehydration tolerance, was found. Moreover, the prevention of strain 10-4-induced wheat tolerance to the adverse impacts of drought, as judged by the degree of membrane lipid peroxidation (MDA) and plant growth (length, biomass), was revealed. Thus, these data provide an argument in favor of a key role of endogenous SA as a hormone intermediate in triggering the defense responses by B. subtilis 10-4, which also afford the foundation for the development of the bacterial-induced tolerance of these two different wheat genotypes under dehydration
    corecore