7 research outputs found

    Development of a Methodology for Forecasting the Sustainable Development of Industry in Russia Based on the Tools of Factor and Discriminant Analysis

    No full text
    The problem of sustainable development is one of the central issues on the agenda of the global community. However, it is difficult to assess the pace and quality of sustainable development of individual economic systems—in particular, industry—due to the lack of a unified methodological approach. In this regard, the following research goal was formulated—to develop and test a methodology for forecasting sustainable development by using statistical tools. The achievement of the goal was facilitated by the application of formalization methods, factor analysis, discriminant analysis, the method of weighted sum of the criteria, and the method of comparison. The results of the study are new scientific and practical solutions that develop the ability to diagnose economic systems for the transition to environmentally friendly production. Firstly, methodological solutions are proposed to assess the nature of the transition of industry to sustainable development (low, medium, or high rate). The methodology is based on the proposed aggregated indicator of sustainable industrial development based on the results of factor analysis (by the method of principal components). As a result, the patterns of sustainable development of the extractive and manufacturing sectors of the Russian economy are revealed. Secondly, integral indicators of economic, environmental and social factors of sustainable development are calculated, and classification functions for each type of industrial transition to sustainable development (low, medium, or high) are formed through discriminant analysis. Scenarios of industrial development are developed, taking into account the multidirectional trajectories of the socioeconomic development of the country. Thirdly, the DFD model of the process of scenario forecasting of sustainable industrial development is formalized, reflecting the movement of data flows necessary for forecasting sustainable industrial development. It is revealed that the manufacturing industry is expected to maintain a low rate of transition to sustainable development. On the contrary, for the extractive industry, if efforts and resources are concentrated on environmental innovations, average transition rates are predicted. The uniqueness of the proposed approach lies in combining two types of multivariate statistical analysis and taking into account the indicators that characterize the contribution of industrial enterprises to sustainable development

    Acidic Gases Solubility in Bis(2-Ethylhexyl) Sulfosuccinate Based Ionic Liquids Using the Predictive Thermodynamic Model

    No full text
    To properly design ionic liquids (ILs) adopted for gases separation uses, a knowledge of ILs thermodynamic properties as well their solubilities with the gases is essential. In the present article, solubilities of CO2 and H2S in bis(2-Ethylhexyl)sulfosuccinate based ILs were predicted using the conductor like screening model for real solvents COSMO-RS. According to COSMO-RS calculations, the influence of the cation change was extensively analyzed. The obtained data are used for the prediction of adequate solvent candidates. Moreover, to understand the intrinsic behavior of gases solubility the free volume of the chosen ILs and their molecular interactions with respectively CO2 and H2S were computed. The results suggest that hydrogen bonding interactions in ILs and between ILs and the gases have a pivotal influence on the solubility

    Absorption Behavior of Acid Gases in Protic Ionic Liquid/Alkanolamine Binary Mixtures

    No full text
    Herein, we studied the absorption of H<sub>2</sub>S and CO<sub>2</sub> by alkanolamine–protic ionic liquids binary mixtures based on 2-hydroxyethylammonium (MEA) or triethanolammonium cations and residues of 2-hydroxy-5-sulfobenzoic acid or pyridine-3-carboxylic acid at various temperatures and partial gases pressures. It was found that absorbents based on the 2-hydroxyethylammonium cation, performed high absorption properties toward the H<sub>2</sub>S. The solubility of hydrogen sulfide, characterized by the Henry’s Law constant, in MEA-based binary mixtures had the values comparable to the commercially available ionic liquids. The results of thermal desorption analysis demonstrated that the capture of acid gases in MEA-based absorbents occurred at two stages: through the dissolution in MEA component and in protic ionic liquid

    The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    No full text
    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S

    The Cation Effect on the Free Volume and the Solubility of H<sub>2</sub>S and CO<sub>2</sub> in Ionic Liquids Based on Bis(2-Ethylhexyl) Sulfosuccinate Anion

    No full text
    Herein, we report for the first time a study dedicated to acidic gases’ solubility in ionic liquids with sterically hindered bulky anion, namely bis(2-ethylhexyl) sulfosuccinate ([doc]), experimentally evaluated at low pressures. The effect of cation change (imidazolium, pyridinium, and pyrrolidinium) on the thermophysical properties and sorption capacities was also discussed. The densities and the activation energies of the tested ILs exhibited minor differences. Furthermore, the COSMO-RS model was used to predict the free volumes of ILs aiming to investigate its influence on gas solubilities. The conducted calculations have revealed an antibate correlation between the fractional free volume (FFV) and Henry’s law constant. In particular, the lowest FFV in 1-methylimidazolium [doc] corresponded to the minimal sorption and vice versa. In addition, it was shown that the presence of protic cation results in a significant reduction in CO2 and H2S solubilities. In general, the solubility measurement results of the synthesized ILs have shown their superiority compared to fluorinated ILs based on the physical absorption mechanism
    corecore