51 research outputs found
Observer Dependent Horizon Temperatures: a Coordinate-Free Formulation of Hawking Radiation as Tunneling
We reformulate the Hamilton-Jacobi tunneling method for calculating Hawking
radiation in static, spherically-symmetric spacetimes by explicitly
incorporating a preferred family of frames. These frames correspond to a family
of observers tied to a locally static timelike Killing vector of the spacetime.
This formulation separates the role of the coordinates from the choice of
vacuum and thus provides a coordinate-independent formulation of the tunneling
method. In addition, it clarifies the nature of certain constants and their
relation to these preferred observers in the calculation of horizon
temperatures. We first use this formalism to obtain the expected temperature
for a static observer at finite radius in the Schwarzschild spacetime. We then
apply this formalism to the Schwarzschild-de Sitter spacetime, where there is
no static observer with 4-velocity equal to the static timelike Killing vector.
It is shown that a preferred static observer, one whose trajectory is geodesic,
measures the lowest temperature from each horizon. Furthermore, this observer
measures horizon temperatures corresponding to the well-known Bousso-Hawking
normalization.Comment: 11 pages, 1 2-part figure, references added, appendix added,
discussion streamline
- …